China OEM Zw61ka-Tfp-522 Refrigeration Parts Air Cooling System Compressor best air compressor

Product Description

 

PRODUCT DIAPLAY

 

PRODUCT DATA

 

Product Feature
The axial and radial flexibility technology of the CHINAMFG vortex ensures the compressor
Excellent reliability and efficiency
Broad product capacity range
Lower oil circulation rate
Superior resistance to liquid hammer
Lower noise and vibration levels
Lower LCCP (Life Cycle Climate Performance)
Dual machine parallel and triple machine parallel, with excellent seasonal energy efficiencyCompared to (needs to be verified or confirmed by CHINAMFG TM)

380-420V; 50Hz, 3 Phase              
Typical Model Nominal Power (HP) Nominal Capacity Input power (W) Current        (A) Displ  (cm3/rev) Weight   (kg) Height   (mm) Noise   (dBA)
(W) (Btu/h)
ZR24K3E-TFD 2 5,900 20,119 1,920 4.3 5.92 25.0  383 69.0 
ZR36K3E-TFD 3 8,900 30,349 2,680 5.7 8.61 28.0  406 71.0 
ZR42K3E-TFD 3.5 10,250 34,952 3,100 7.1 9.94 28.0  406 69.0 
ZR47K3E-TFD 3.92 11,550 39,385 3,430 7.2 11.16 30.0  436 71.0 
ZR61KCE-TFD 5.1 14,000 47,600 4,460 8.4 3.14 28.0  436 71.0 
ZR68KCE-TFD 5.7 14,800 54,000 5,100 8.9 3.11 39.0  436 72.0 
ZR72KCE-TFD 6 16,600 56,500 5,150 9.1 3.22 57.2  457 72.0 
ZR81KCE-TFD 6.8 18,600 63,500 5,990 10.9 3.17 39.0  457 72.0 
ZR94KCE-TFD 7.8 23,000 78,600 6,950 12.9 3.34 57.2  462 74.0 
ZR108KCE-TFD 9 28,800 88,100 7,580 13.8 3.4 59.9  497 74.0 
ZR125KCE-TFD 10.4 30,000 103,000 8,950 16 3.4 61.2  552 74.0 
ZR144KCE-TFD 12 34,500 118,000 10,150 17.7 3.4 61.2  552 75.0 
ZR160KCE-TFD 13.3 37,500 128,000 11,450 20.5 3.28 64.9  552 78.0 
ZR190KCE-TFD 15.8 44,000 150,000 13,650 26.5 3.22 66.2  552 82.0 
ZR250KCE-TWD 20.8 58,500 200,000 18,000 30.1 3.25 139.3  552 83.0 
ZR310KCE-TWD 25.8 72,500 248,000 22,300 37.9 3.25 160.1  552 85.0 
ZR380KCE-TWD 31.7 91,500 313,000 26,700 45.5 3.43 176.9  552 88.0 

MAIN PRIDUCTS

 

OUR COMPANY

 

CERTIFICATE

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 12month
Installation Type: Movable Type
Lubrication Style: Oil-free
Cylinder Position: Vertical
Structure Type: Piston
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China OEM Zw61ka-Tfp-522 Refrigeration Parts Air Cooling System Compressor   best air compressorChina OEM Zw61ka-Tfp-522 Refrigeration Parts Air Cooling System Compressor   best air compressor
editor by CX 2024-02-01