Product Description
Product Technical Description
| Model : | Oil injected Screw Air Compressor Direct Driven(D series) |
| Type: | Oil injected Direct Driven Screw Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 7~10 bar |
| Installed Motor Power: | 7.5KW~75KW |
| Capacity: | 1~13.3m3/min |
| Color: | Blue |
| Driven Method: | Direct Driven |
| Air End: | Original Ally-win Air End from Germany |
| Trademark: | SCR |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Casting , Metal , Plastic , Rubber |
Product Features
1. Sino-Japan technology cooperation, high reliability.
2. Big airend with low rpm for better performance an long life span.
3. High reliability components imported original from Germany, Swiss etc.
4. CE level protection design and manufacturing
5. Oversize cooler suitable for tropical area.
6. More than 10,000.00 units running around the world since 10years ago.
7. Intelligent PLC control.
8. Easy to do maintenance and service.
1.Automatic interlock control and operations management
Intelligent microcomputer controller, combined with pressure, temperature, current, signal, alarm with 12 important indicators and 13 comprehensive security protection measures with Chinese and English display optional and maintenance time limit remind. The RS485 communication interface can realize several machines joint control. Concise and comprehensive to keep the customer informed of the machines’ situation in time.
2.Oversize cooler
SCR’s oversized cooler is typically 30% larger then competitors machines. The large heat exchanger prevents overtemperature faults even in high ambient conditions. It also helps reduces carbon deposition phenomenon caused high temperature. The inner wall is treated with antiseptic treatment prolonging the service life.
3.Same speed drive direct driven structure
Type D use same speed drive is use to overcome the loss of power transmission efficiency under the drive of speed gear, the structure is not stable, many error problems, maximum energy savings and minimum maintenance costs.
4.German KTR coupling
| Model | SCR40D-7 | SCR40D-8 | |
| Capacity/Pressure(m3/min,/BAR) | 5.2/7 | 5/8 | |
| Main Motor | Power(KW) | 30KW(40H.P) | |
| Starting way | Start-Delta | ||
| Volt(V) | 380/400/415(220) | ||
| Motor safety grade | IP54 | ||
| Motor isolation grade | F | ||
| Electrical Supply | 380(400,415)V/50Hz/3Phase, 220V/60HZ/3P | ||
| Outlet Temperature(ºC) | ≤ Environment Temperature+10ºC | ||
| Driven way | Belt Driven | ||
| Noise level at 1 meter | 70±3dB(A) | ||
| Cooling method | Air cooling | ||
| Oil content | 1~3 ppm | ||
| Outlet Connection | Rc1 1/2 | ||
| Dimension | Length(mm) | 1600 | |
| Width(mm) | 1000 | ||
| Height(mm) | 1360 | ||
Product Categories
Advantages
Application
About SCR
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-02-21
China Best Sales 55kw 75HP Stationary Screw Air Compressor High Efficiency Airend Direct Driven Rotary Screw Air Compressor with Air Cooling air compressor for car
Product Description
Product Description
55kw 75hp Stationary Screw Air Compressor High Efficiency Airend Direct Driven Rotary Screw Air Compressor with Air Cooling
The screw air compressor is a device that provides compressed air for each workshop in the factory.
It compresses the atmospheric pressure air inhaled from the outside through the screw, air intake system and other mechanisms, stores it in an air tank reciever, and sends it to each production line through the pipeline.
Some equipment that needs to use compressed air, such as car repari store, the producation type factory with various pneumatic measuring instruments, the cylinder of the equipment, etc.,
The use of screw compressors is to create more high pressure air.
Detailed Photos
Advatages:
1. Screw(air end), using German and Italian technology, a strong heart determines the excellent performance of the pillow core.
2. Main eletrical system, Mainly use electrical components from Top brands, Greatly improve the service life of electrical appliances.
3.Inlet air system,The design of the air intake system with CHINAMFG Rand ensures the air intake quality of the compressor and the safety of the main engine, and greatly improves the service life of the equipment.
4. Pipes, stainless steel/brass pipes are used to ensure the cleanliness of the air, anti-corrosion and dirt resistance, and improve the service life of the machine
Product Parameters
| Model Modelo |
HW-55A | HW-75A | HW-90A | HW-110A | HW-132A | HW-160A | HW-185A | |||||||||||||||||||||||||
| air flow flujo de aire |
m3/min | 10 | 9.6 | 8 | 7.6 | 13 | 12.6 | 11 | 10.5 | 16 | 15 | 13 | 12.5 | 21 | 19.8 | 17 | 16.4 | 24.5 | 23.2 | 20 | 19.4 | 28.7 | 27.6 | 23.5 | 22.8 | 32 | 30.4 | 27.4 | 26.8 | |||
| cfm | 353.1 | 338.976 | 282.48 | 268.356 | 459.03 | 444.906 | 388.41 | 370.755 | 564.96 | 529.65 | 459.03 | 441.375 | 741.51 | 699.138 | 600.27 | 579.084 | 865.095 | 819.192 | 706.2 | 685.014 | 1013.397 | 974.556 | 829.785 | 805.068 | 1129.92 | 1073.424 | 967.494 | 946.308 | ||||
| working pressure presión laboral |
bar(kg) | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | 7 | 8 | 10 | 12.5 | |||
| psi | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | 102 | 116 | 145 | 174 | ||||
| power poder |
KW / HP | 55kw/ 75hp |
75kw/ 100hp |
90kw/ 120hp |
110kw/ 150hp |
132kw/ 175hp |
160kw/ 210hp |
185kw/ 250hp |
||||||||||||||||||||||||
| noise | db(A) | 78±2 | 78±2 | 83±2 | 85±2 | 85±2 | 85±2 | 88±2 | ||||||||||||||||||||||||
| Caliber | inch | RP2 | RP2 | RP2 | RP2, 1/2 | RP2, 1/2 | RP2, 1/2 | RP2, 1/2 | ||||||||||||||||||||||||
| Voltage/Frequency | AC 380v/415v/220v/480v or 50hz/60hz accpet Customized voltage | |||||||||||||||||||||||||||||||
| Starting mode Modo de inicio |
Y-△ / direct driver | |||||||||||||||||||||||||||||||
| lubricant oil | liter | 55 | 65 | 72 | 90 | 90 | 110 | 110 | ||||||||||||||||||||||||
| Shape dimension (mm) |
L | 1800 | 1800 | 2000 | 2300 | 2500 | 2500 | 3150 | ||||||||||||||||||||||||
| W | 1250 | 1250 | 1250 | 1470 | 1470 | 1470 | 1980 | |||||||||||||||||||||||||
| H | 1670 | 1670 | 1670 | 1840 | 1840 | 1840 | 2150 | |||||||||||||||||||||||||
| Weight | KG | 710 | 1060 | 1350 | 1570 | 1930 | 2190 | 2650 | ||||||||||||||||||||||||
Certifications
CE, ISO9001,ASME for air tank, Full certificate to ensure you smooth imported compressors.
Installation Instructions
Company Profile
HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.
After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU,CE,ISO9001 standard production machines. The performance and quality of our products have been widely recognized and praised by the market, Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.
1. CHINAMFG company with 30+ manufacturing experenice,
2. not only give you air compressor, also support air compressor system solution ,
3. 1 to 1 service help you solve question quickly.
After Sales Service
Special Customized Service
1) Full OEM
• Quantity: at least 10 pcs
• In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.
2) Half OEM
• Quantity: no limit
• Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.
3) Logo OEM
• Quantity: no limit
• Only the logo will be changed to yours, and no extra fee will be charged.
| After-sales Service: | Support Online and Local Service |
|---|---|
| Warranty: | 12 Moths |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | No |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-10-30