Product Description
Product Technical Description
| Model : | Low Pressure Permanent Magnet Series (LB & LBPM) |
| Type: | Low Pressure Permanent Magnet Screw Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 1.5~5bar |
| Installed Motor Power: | 37~185 Kw |
| Color: | Blue |
| Driven Method: | Direct Driven |
| Trademark: | SCR |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Beverage , Biological Fermentation , Cement Transportation , Printing & Dyeing , Sewage Treatment , Textile |
Product Features
1.Specially designed PM motor.
2.Enhanced energy savings.
3.Low Energy Consumption,Low running,maintenance cost.
4.Aptitude and intelligent Control, integrated touch-screen PLC displayer.
5.Unique safe units make whole compressor more safety, more stable,lest noise,lest energy Loss.
6.Easy to install,operate,maintain.
Specially designed PM motor:
The PM motor efficiency is even higher than IE3 premium efficiency motors. The motor uses high performance magnetic materials giving many advantages such as bearing free operation, grease free maintenance, direct 1:1 coupling without transmission losses, low noise and low vibration leading to a compact structure.
Enhanced Energy Savings:
When demand is low the PM low pressure compressor firstly reduces the speed to maintain the correct flow demand. If the air demand stops the compressor enters standby mode, saving further energy. The compressor automatically restarts and runs when the pressure drops below its setpoint.
The latest generation intelligent touchscreen controller:
SCR’s latest touchscreen interface allows simple intelligent control for your compressor. Pressure and scheduling times can be easily programmed allowing you to automatically start and stop the compressor to match production times. Remote operation and real time monitoring are built in the controller as standard.
Specially designed oil pipe system:
The oil system has been specially designed to reduce maintenance downtime and extend the periods between maintenance visits.
| Model | SCR830LBPM-3 | SCR830LBPM-4 | SCR830LBPM-5 | |
| Capacity/Pressure(m3/min,/BAR) | 6.5~21.5/3 | 6.5~21.5/4 | 6.5~21.5/5 | |
| Motor | Power(KW) | 63 | 75 | 90 |
| Speed(r/min) | 446~1485 | |||
| Starting way | Star-Delta | |||
| Volt(V) | 380/400/415(220) | |||
| Motor safety grade | IP54 | |||
| Motor isolation grade | F | |||
| Electrical Supply | 380(400,415)V/50Hz/3Phase, 220(440)V/60HZ/3P | |||
| Outlet Temperature(ºC) | ≤ Environment Temperature+10ºC | |||
| Driven way | Direct Driven | |||
| Noise level at 1 meter | 75±3dB | |||
| Cooling method | Air cooling | |||
| Oil content | 1.2~3.6 | |||
| Outlet Connection | DN100 | |||
| Dimension | Length(mm) | 2900 | ||
| Width(mm) | 1860 | |||
| Height(mm) | 1900 | |||
| Weight(KG) | 3100 | |||
Product Categories
Advantages
Application
About SCR
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-06
China best SCR10cpm Air End Laser Cutting Air Compressor with Dryer and Tank lowes air compressor
Product Description
Product Description
Product Name: SCR10CPM Air End Laser Cutting Air Compressor with Dryer and Tank
| Model | SCR15CPM-7 | SCR15CPM-8 | SCR15CPM-10 | |
| Capacity/Pressure(m3/min,/BAR) | 1.75/7 | 1.7/8 | 1.5/10 | |
| Motor | Power(KW) | 11KW(15H.P) | ||
| Speed(r/min) | 920/2300 | 920/2300 | 1060/2100 | |
| Motor type | Oil Cooling PM Motor | |||
| Volt(V) | 380/400/415(220) | |||
| Motor safety grade | IP65 | |||
| Motor isolation grade | F | |||
| Electrical Supply | 380(400,415)V/50Hz/3Phase, 220V/60HZ/3P | |||
| Outlet Temperature(ºC) | ≤ Environment Temperature+10ºC | |||
| Driven way | Direct Driven | |||
| Noise level at 1 meter | 68±3dB(A) | |||
| Cooling method | Aircooled | |||
| Oil content | ≤0.1 | |||
| Outlet Connection | Rc 3/4 | |||
| Dimension | Length(mm) | 1840 | ||
| Width(mm) | 605 | |||
| Height(mm) | 1260 | |||
| Weight(KG) | 320 | |||
Product Features
1.Taper connection,no bearing and free maintenance of motor.
2.IP65 protection PM motor.
3.Intergrated PTC proctection for PM motor.
4.High quality PM motor.
5.High reliable PM motor supplier.
6.High efficiency airend.
7.Latest V/F inverter.
8.Easy maintenance.
9.All in 1 design.
Product Categories
Advantages
Application
About SCR
In addition,we have exported our products to more than 55 countries including in UK, USA, Spain etc. since 2008. And we have also established long-term relationship with our partner depend on our high quality products.
Besides, about the annual output,we can manufacture near 7,000 units compressors per year, and around 30% are sold to oversea market.
FAQ
|
1 What trade terms do we provide? What kind of settlement currency do we offer? |
|
Trade term :CIF ,CFR ,FOB,Ex-Works |
|
2 How long is our delivery? |
|
Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case. |
|
3 What is the voltage of the compressor? |
|
The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage according to customer requirement. |
|
4 Can our compressor run in high temperature environment? What is the working temperature range for our machine? |
|
Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. |
|
5 What’s the min. Order requirement ? |
|
Min. Order requirement is 1PCS. |
Contact us
Company Name: ZheJiang CHINAMFG Co., Ltd
Contact Person: Vincent Sun
If you are interested in any of our products,please feel free to contact us.We are looking CHINAMFG to cooperating,growing and developing with your sincerely.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2024-02-04
China supplier 37kw Affortable Industrial Silent Air Compressor for Grid Blasting lowes air compressor
Product Description
0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages
1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
6.Smart touch screen design and 0 pressure drop design
7.Higher efficiency cooling system and electrical motor
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.
Technical Parameters Of Energy Saving Rotary Screw Air Compressor
| Model | Maxinmum working | Capacity(FAD)* | Installed motor power | Driving mode& | Noise | Dimensions(mm) | Weight | Air outlet | |||||||
| pressure | 50 HZ | 60 HZ | Cooling method | level** | pipe diameter | ||||||||||
| bar(g) | psig | m3/min | cfm | m3/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||
| DA-5 | 7.5 | 109 | 0.80 | 28 | 0.80 | 28 | 5.5 | 7.5 | Belt Driven | 75 | 900 | 600 | 860 | 315 | G3/4″ |
| 8.5 | 123 | 0.78 | 28 | 0.78 | 28 | 5.5 | 7.5 | Air Cooling | 75 | 900 | 600 | 860 | |||
| DA-7 | 7.5 | 109 | 1.09 | 39 | 1.09 | 39 | 7.5 | 10 | 75 | 900 | 600 | 860 | 315 | G3/4″ | |
| 8.5 | 123 | 1.07 | 38 | 1.07 | 38 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 10.5 | 152 | 0.92 | 32 | 0.91 | 32 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 13.0 | 189 | 0.73 | 26 | 0.72 | 26 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| DA-11 | 7.5 | 109 | 1.66 | 59 | 1.66 | 59 | 11 | 15 | 75 | 1230 | 650 | 900 | 324 | G3/4″ | |
| 8.5 | 123 | 1.64 | 58 | 1.64 | 58 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 10.5 | 152 | 1.45 | 51 | 1.45 | 51 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 13.0 | 189 | 1.13 | 40 | 1.12 | 40 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| DA-15 | 7.5 | 109 | 2.54 | 90 | 2.53 | 89 | 15 | 20 | Direct Driven | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ |
| 8.5 | 123 | 2.51 | 88 | 2.50 | 88 | 15 | 20 | Air Cooling | 75 | 1465 | 990 | 1345 | |||
| 10.5 | 152 | 1.97 | 70 | 1.86 | 66 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 1.83 | 65 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| DA-18 | 7.5 | 109 | 3.04 | 107 | 3.65 | 129 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | |
| 8.5 | 123 | 3.03 | 107 | 3.63 | 128 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 2.36 | 83 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| DA-22 | 7.5 | 109 | 3.57 | 126 | 3.65 | 129 | 22 | 30 | 75 | 1465 | 990 | 1345 | 477 | G1-1/4″ | |
| 8.5 | 123 | 3.55 | 125 | 3.63 | 128 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 2.97 | 105 | 2.36 | 83 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| DA-30 | 7.5 | 109 | 5.28 | 187 | 4.49 | 159 | 30 | 40 | 85 | 1600 | 1250 | 1550 | 682 | G1-1/2″ | |
| 8.5 | 123 | 5.26 | 186 | 4.48 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 3.45 | 122 | 3.58 | 126 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| DA-37 | 7.5 | 109 | 6.54 | 231 | 6.33 | 224 | 37 | 50 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 6.52 | 230 | 6.30 | 222 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 5.16 | 182 | 4.43 | 156 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| DA-45 | 7.5 | 109 | 7.67 | 271 | 7.79 | 275 | 45 | 60 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 7.62 | 269 | 7.76 | 574 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 6.46 | 228 | 6.24 | 220 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 6.41 | 226 | 4.44 | 157 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| DA-55 | 7.5 | 109 | 9.76 | 345 | 9.14 | 323 | 55 | 75 | 85 | 1876 | 1326 | 1700 | 1310 | G2″ | |
| 8.5 | 123 | 9.67 | 342 | 9.06 | 320 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 7.53 | 266 | 7.74 | 273 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 7.40 | 261 | 6.30 | 222 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| DA-75 | 7.5 | 109 | 14.21 | 502 | 11.72 | 414 | 75 | 100 | 85 | 1876 | 1326 | 1700 | 1325 | G2″ | |
| 8.5 | 123 | 12.55 | 443 | 11.63 | 411 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 9.51 | 336 | 11.43 | 404 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 9.23 | 326 | 8.75 | 309 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| DA-90(W) | 7.5 | 109 | 16.62 | 587 | 17.01 | 601 | 90 | 120 | Direct Driven | 72 | 2450 | 1800 | 1700 | 2450 | DN80 |
| 8.5 | 123 | 16.37 | 578 | 16.82 | 594 | 90 | 120 | Air Cooling Or | 72 | 2450 | 1800 | 1700 | |||
| 10.5 | 152 | 14.21 | 502 | 14.87 | 525 | 90 | 120 | Water Cooling | 72 | 2450 | 1800 | 1700 | |||
| 13.0 | 189 | 11.77 | 416 | 11.27 | 398 | 90 | 120 | 72 | 2450 | 1800 | 1700 | ||||
| DA-110(W) | 7.5 | 109 | 20.13 | 711 | 19.10 | 674 | 110 | 150 | 72 | 2450 | 1800 | 1700 | 2500 | DN80 | |
| 8.5 | 123 | 20.05 | 708 | 19.06 | 673 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 16.33 | 576 | 17.01 | 601 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 14.11 | 498 | 14.68 | 518 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| DA-132(W) | 7.5 | 109 | 22.85 | 807 | 24.37 | 861 | 132 | 175 | 72 | 2450 | 1800 | 1700 | 2600 | DN80 | |
| 8.5 | 123 | 22.73 | 802 | 24.23 | 856 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 19.88 | 702 | 18.95 | 669 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 16.51 | 583 | 16.82 | 594 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| DA-160(W) | 7.5 | 109 | 26.92 | 950 | 27.90 | 985 | 160 | 215 | 78 | 2650 | 1700 | 1850 | 3200 | DN80 | |
| 8.5 | 123 | 26.86 | 949 | 27.76 | 980 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 22.44 | 792 | 23.97 | 846 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 19.63 | 693 | 18.82 | 664 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| DA-185(W) | 7.5 | 109 | 28.89 | 1571 | 30.53 | 1078 | 185 | 250 | 78 | 2650 | 1700 | 1850 | 3300 | DN80 | |
| 8.5 | 123 | 28.84 | 1018 | 30.44 | 1075 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 25.11 | 886 | 27.46 | 970 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 22.08 | 780 | 23.69 | 836 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| DA-200(W) | 7.5 | 109 | 31.88 | 1126 | 30.53 | 1078 | 200 | 270 | 80 | 3000 | 1950 | 2030 | 4750 | DN100 | |
| 8.5 | 123 | 31.82 | 1124 | 30.44 | 1075 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 28.48 | 1006 | 30.22 | 1067 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 25.00 | 883 | 27.07 | 956 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| DA-220(W) | 7.5 | 109 | 36.20 | 1278 | 37.22 | 1314 | 220 | 300 | 80 | 3000 | 1950 | 2030 | 4800 | DN100 | |
| 8.5 | 123 | 36.15 | 1276 | 37.17 | 1312 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 31.71 | 1120 | 33.25 | 1174 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 28.48 | 1006 | 27.07 | 956 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| DA-250(W) | 7.5 | 109 | 43.31 | 1529 | 42.87 | 1514 | 250 | 350 | 80 | 3000 | 1950 | 2030 | 4850 | DN100 | |
| 8.5 | 123 | 43.24 | 1527 | 41.30 | 1458 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 36.03 | 1272 | 37.04 | 1308 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 31.55 | 1114 | 33.15 | 1170 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| DA-280(W) | 7.5 | 109 | 46.59 | 1645 | 47.16 | 1665 | 280 | 375 | 85 | 3700 | 2300 | 2450 | 5200 | DN125 | |
| 8.5 | 123 | 46.53 | 1643 | 45.64 | 1612 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 42.95 | 1516 | 42.56 | 1503 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 35.89 | 1267 | 36.95 | 1305 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| DA-315(W) | 7.5 | 109 | 53.16 | 1877 | 50.88 | 1797 | 315 | 425 | 85 | 3700 | 2300 | 2450 | 6000 | DN125 | |
| 8.5 | 123 | 52.63 | 1858 | 50.83 | 1795 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 43.05 | 1520 | 46.27 | 1634 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 42.93 | 1516 | 40.32 | 1424 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| DA-355(W) | 7.5 | 109 | 63.37 | 2238 | 58.12 | 2052 | 355 | 475 | 85 | 4500 | 2500 | 2450 | 7000 | DN125 | |
| 8.5 | 123 | 63.16 | 2230 | 56.54 | 1997 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 51.57 | 1821 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 43.79 | 1546 | 45.35 | 1601 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| DA-400(W) | 7.5 | 109 | 70.99 | 2507 | 61.72 | 2179 | 400 | 550 | 85 | 4500 | 2500 | 2450 | 8000 | DN125 | |
| 8.5 | 123 | 70.64 | 2494 | 59.72 | 2109 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 56.52 | 1996 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 46.34 | 1636 | 51.35 | 1813 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.
DENAIR Factory & Product Lines
DENAIR Exhibition
We carefully selected for you the classic case
Enhanced Energy Saving Air Compressor in Oman
Project Name: Sandblasting in Muscat, Oman.
Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.
Model No. & Qty: DA-75+ x 1.
Working Time: From June, 2016 till now
Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
.
Q3: Warranty terms of your air compressor machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the air compressor?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-01-15
China OEM 90kw 120 HP Low Presssure Cement Industrial Rotary Screw Air Compressor air compressor lowes
Product Description
Low Presssure Cement Air Compressor Advantages:
1.It will cause a terrible waste of electric power if choose a routine 7bar air compressor when the maximum working pressure is 2 to 5bar. CHINAMFG low pressure screw air compressor can enlarge the air delivery under the same motor power to help you save 20% to 50% electric power.
2.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
3.Adopts world-renowned components, such as Schneider electronics from
France, Mann filters from Germany, CHINAMFG pressure sensor from
Denmark, etc. contribute to guarantee the compressor longer service life.
4.Conform to CE, ISO9001 and energy saving certification, etc.
5.Designed especially for textile, cement and glass industry, etc.
Technical Parameters Of The Low Pressure Screw Air Compressor:
| Model | Maximum working pressure |
Capacity FAD |
Installed motor power |
Driving Mode Cooling Method |
Dimensions (mm) |
Weight (kg) |
|||||
| bar(e) | psig | m3/min | cfm | kW | hp | L | W | H | |||
| DAL-22A-3 | 3 | 44 | 5.94 | 209.7 | 22 | 30 | Belt Driven A-Air cooling |
1450 | 975 | 1255 | 800 |
| DAL-30A-3 | 7.72 | 272.6 | 30 | 40 | 1650 | 1200 | 1350 | 1100 | |||
| DAL-37A-3 | 10.01 | 353.5 | 37 | 50 | 1650 | 1200 | 1350 | 1300 | |||
| DAL-45A-3 | 12.11 | 427.6 | 45 | 60 | 1700 | 1200 | 1350 | 1700 | |||
| DAL-55A-3 | 13.11 | 462.9 | 55 | 75 | 1900 | 1200 | 1500 | 2000 | |||
| DAL-75A-3 | 23.98 | 846.7 | 75 | 100 | Direct Driven A-Air cooling W-Water cooling |
2150 | 1350 | 1650 | 2400 | ||
| DAL-90A-3 | 25.24 | 891.2 | 90 | 120 | 2600 | 1550 | 1800 | 2800 | |||
| DAL-110A-3 | 26.34 | 930.1 | 110 | 150 | 2600 | 1550 | 2000 | 3500 | |||
| DAL-132A-3 | 32.8 | 1158.2 | 132 | 175 | 2600 | 1550 | 2000 | 3800 | |||
| DAL-160A-3 | 44.12 | 1557.9 | 160 | 215 | 2800 | 1950 | 2000 | 4200 | |||
| DAL-185A-3 | 44.5 | 1571.3 | 185 | 250 | 2800 | 1950 | 2000 | 4500 | |||
| DAL-200A-3 | 59.94 | 2116.5 | 200 | 270 | 3700 | 1900 | 2200 | 4800 | |||
| DAL-250A-3 | 75.06 | 2650.4 | 250 | 350 | 4250 | 2200 | 2200 | 6700 | |||
| DAL-90W-3 | 25.24 | 891.2 | 90 | 120 | 2450 | 1600 | 1800 | 2800 | |||
| DAL-110W-3 | 26.34 | 930.1 | 110 | 150 | 2600 | 1550 | 2000 | 3500 | |||
| DAL-132W-3 | 32.8 | 1158.2 | 132 | 175 | 2600 | 1550 | 1900 | 3800 | |||
| DAL-160W-3 | 44.12 | 1557.9 | 160 | 215 | 2800 | 1950 | 2000 | 5000 | |||
| DAL-185W-3 | 44.5 | 1571.3 | 185 | 250 | 2800 | 1950 | 2000 | 5500 | |||
| DAL-200W-3 | 59.94 | 2116.5 | 200 | 270 | 3500 | 2200 | 2210 | 6300 | |||
| DAL-250W-3 | 75.06 | 2650.4 | 250 | 350 | 3500 | 2200 | 2210 | 7200 | |||
| DAL-355W-3 | 84.24 | 2974.5 | 355 | 475 | 4550 | 2300 | 2350 | 9200 | |||
| DAL-22A-5 | 5 | 73 | 5.62 | 198.4 | 22 | 30 | Belt Driven A-Air cooling |
1450 | 975 | 1255 | 800 |
| DAL-30A-5 | 6.8 | 240.1 | 30 | 40 | 1650 | 1200 | 1350 | 1100 | |||
| DAL-37A-5 | 7.56 | 266.9 | 37 | 50 | 1650 | 1200 | 1350 | 1100 | |||
| DAL-45A-5 | 9.94 | 351 | 45 | 60 | 1700 | 1200 | 1350 | 1700 | |||
| DAL-55A-5 | 12.96 | 457.6 | 55 | 75 | 1900 | 1200 | 1500 | 2000 | |||
| DAL-75A-5 | 17.43 | 615.5 | 75 | 100 | 2150 | 1350 | 1650 | 2400 | |||
| DAL-90A-5 | 20.41 | 720.7 | 90 | 120 | Direct Driven A-Air cooling W-Water cooling |
2600 | 1550 | 1800 | 2800 | ||
| DAL-110A-5 | 25.01 | 883.1 | 110 | 150 | 2600 | 1550 | 2000 | 3500 | |||
| DAL-132A-5 | 26.03 | 919.1 | 132 | 175 | 2600 | 1550 | 2000 | 3800 | |||
| DAL-160A-5 | 32.57 | 1150 | 160 | 215 | 2800 | 1950 | 2000 | 4200 | |||
| DAL-185A-5 | 43.44 | 1533.9 | 185 | 250 | 2800 | 1950 | 2000 | 4500 | |||
| DAL-200A-5 | 52.74 | 1862.2 | 200 | 270 | 3700 | 1900 | 2200 | 4800 | |||
| DAL-250A-5 | 59.94 | 2116.5 | 250 | 350 | 4250 | 2200 | 2200 | 6700 | |||
| DAL-90W-5 | 20.41 | 720.7 | 90 | 120 | 2450 | 1600 | 1800 | 2800 | |||
| DAL-110W-5 | 25.01 | 883.1 | 110 | 150 | 2600 | 1550 | 2000 | 3500 | |||
| DAL-132W-5 | 26.03 | 919.1 | 132 | 175 | 2600 | 1550 | 1900 | 3800 | |||
| DAL-160W-5 | 32.57 | 1150 | 160 | 215 | 3100 | 1700 | 1900 | 5000 | |||
| DAL-185W-5 | 43.44 | 1533.9 | 185 | 250 | 3100 | 1700 | 1900 | 5500 | |||
| DAL-200W-5 | 52.74 | 1862.2 | 200 | 270 | 3500 | 2200 | 2210 | 7200 | |||
| DAL-250W-5 | 59.94 | 2116.5 | 250 | 350 | 3500 | 2200 | 2210 | 7200 | |||
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd.,Xindai Town, HangZhou, ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-01-03
China supplier Air Compressor Price List R407c Rr48ke-Pfj-Nn7 220V/380V Scroll Compressor for Air Conditioner air compressor lowes
Product Description
| Model | RR36KM-PFJ-NN1 | RR48KM-PFJ-NN1 | RR36KM-TFD-NN1 | RR48KM-TFD-NN1 | RR61KM-TFD-NN1 | RR72KM-TFD-NN1 | |
| Motor Power | 220-240V/50HZ/1ph | 220-240V/50HZ/1ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | |
| Nominal Power(HP) | 3 | 4 | 3 | 4 | 5 | 6 | |
| Displacement(m3/h) | 8.1 | 11.4 | 8.1 | 11.4 | 14.4 | 17.2 | |
| Refrigerant | R22 | R22 | R22 | R22 | R22 | R22 | |
| Nominal Capacity(W) | 8750 | 11800 | 8870 | 11850 | 14910 | 17600 | |
| Nominal Input Power(W) | 2664 | 3600 | 2670 | 3600 | 4430 | 5190 | |
| COP(W/W) | 3.18 | 3.25 | 3.28 | 3.27 | 3.36 | 3.39 | |
| Nominal Operating Current(A) | 12.2 | 17.6 | 4.6 | 6.1 | 8.0 | 8.8 | |
| LRA(A) | 83 | 121 | 33 | 57 | 61 | 75 | |
| MOC(A) | 17.7 | 25.6 | 7.5 | 9.5 | 11.5 | 13.7 | |
| Fitting OD Size (Inch) | Dis.Tube | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| Suc.Tube | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 | |
| Dimension (mm) | (L)*(W)*(H) | 244x244x405 | 240x240x436 | 244x244x405 | 240x240x436 | 240x240x456 | 240x240x456 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | |
| Lubrication Oil Initial Charge (L) | 1.3 | 1.3 | 1.3 | 1.4 | 1.8 | 1.8 | |
| Lubrication Oil Recharge (L) | 1.3 | 1.3 | 1.3 | 1.4 | 1.8 | 1.8 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 4.3 | 3.0 |
| Low Pressure Side | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
| Weight (Kg) | 30 | 36 | 30 | 36 | 40 | 41 | |
| Note: Evaporating Temperature 7.2°C, Condensing Temperature 54.4°C, Return Gas Temperature 18.3°C,Subcoolting 8,3°C | |||||||
| Model | RR81KM-TFD-NN1 | RR94KM-TFD-NN1 | RR125KM-TFD-NN1 | RR144KM-TFD-NN1 | RR160KM-TFD-GN1 | RR190KM-TFD-GN1 | |
| Motor Power | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | |
| Nominal Power(HP) | 7 | 8 | 10 | 12 | 13 | 15 | |
| Displacement(m3/h) | 18.8 | 22.1 | 29.1 | 33.2 | 36.3 | 43.3 | |
| Refrigerant | R22 | R22 | R22 | R22 | R22 | R22 | |
| Nominal Capacity(W) | 19850 | 23200 | 30500 | 34950 | 37950 | 45450 | |
| Nominal Input Power(W) | 5805 | 6700 | 9120 | 10150 | 11250 | 13550 | |
| COP(W/W) | 3.42 | 3.43 | 3.43 | 3.47 | 3.35 | 3.31 | |
| Nominal Operating Current(A) | 10.3 | 12.4 | 15.6 | 17.4 | 20.2 | 25.3 | |
| LRA(A) | 116 | 119 | 125 | 154 | 174 | 174 | |
| MOC(A) | 16.3 | 17.3 | 22.2 | 25.2 | 27.5 | 31.1 | |
| Fitting OD Size (Inch) | Dis.Tube | 1/2 | 1/2 | 7/8 | 7/8 | 7/8 | 7/8 |
| Suc.Tube | 7/8 | 7/8 | 1 3/8 | 1 3/8 | 1 3/8 | 1 3/8 | |
| Dimension (mm) | (L)*(W)*(H) | 240x240x461 | 260x280x495 | 260x280x551 | 260x280x551 | 260x280x570 | 260x280x570 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | |
| Lubrication Oil Initial Charge (L) | 1.8 | 2.7 | 3.0 | 3.0 | 3.2 | 3.2 | |
| Lubrication Oil Recharge (L) | 1.8 | 2.7 | 3.0 | 3.0 | 3.2 | 3.2 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3.0 | 3.0 4.3 | 3.0 | 3.0 | 3.0 | 3.0 |
| Low Pressure Side | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
| Weight (Kg) | 41 | 58 | 63 | 63 | 67 | 67 | |
| Model | RR36KE-PFJ-NN7 | RR48KE-PFJ-NN7 | RR36KM-TFD-NN7 | RR48KE-TFD-NN7 | RR61KE-TFD-NN7 | RR72KE-TFD-NN7 | |
| Motor Power | 220-240V/50HZ/1ph | 220-240V/50HZ/1ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | |
| Nominal Power(HP) | 3 | 4 | 3 | 4 | 5 | 6 | |
| Displacement(m3/h) | 8.1 | 11.4 | 8.1 | 11.4 | 14.4 | 17.2 | |
| Refrigerant | R407C | R407C | R407C | R407C | R407C | R407C | |
| Nominal Capacity(W) | 8780 | 11867 | 8450 | 11500 | 15100 | 16500 | |
| Nominal Input Power(W) | 2636 | 3560 | 2630 | 3550 | 4750 | 5600 | |
| COP(W/W) | 3.03 | 3.06 | 3.13 | 3.16 | 3.20 | 3.20 | |
| Nominal Operating Current(A) | 11.9 | 17.7 | 4.9 | 6.4 | 8.2 | 9.2 | |
| LRA(A) | 83 | 121 | 33 | 57 | 61 | 75 | |
| MOC(A) | 18.3 | 26.7 | 7.5 | 9.7 | 11.7 | 13.9 | |
| Fitting OD Size (Inch) | Dis.Tube | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| Suc.Tube | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 | |
| Dimension (mm) | (L)*(W)*(H) | 244x244x405 | 240x240x436 | 244x244x405 | 240x240x436 | 240x240x456 | 240x240x456 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | POE | POE | POE | POE | POE | POE | |
| Lubrication Oil Initial Charge (L) | 1.3 | 1.3 | 1.3 | 1.4 | 1.8 | 1.8 | |
| Lubrication Oil Recharge (L) | 1.3 | 1.3 | 1.3 | 1.4 | 1.8 | 1.8 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Low Pressure Side | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ||
| Weight (Kg) | 30 | 36 | 30 | 36 | 40 | 41 | |
| Note: Evaporating Temperature 7.2°C, Condensing Temperature 54.4°C, Return Gas Temperature 18.3°C,Subcoolting 8,3°C | |||||||
| Model | RR81KE-TFD-NN7 | RR94KE-TFD-NN7 | RR125KE-TFD-NN7 | RR144KE-TFD-NN7 | RR160KE-TFD-GN7 | RR190KE-TFD-GN7 | |
| Motor Power | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | 380~420V/50Hz/3ph | |
| Nominal Power(HP) | 7 | 8 | 10 | 12 | 13 | 15 | |
| Displacement(m3/h) | 18.8 | 22.1 | 29.1 | 33.2 | 36.3 | 43.3 | |
| Refrigerant | R407C | R407C | R407C | R407C | R407C | R407C | |
| Nominal Capacity(W) | 18500 | 22900 | 29950 | 34450 | 37450 | 43950 | |
| Nominal Input Power(W) | 5950 | 6930 | 8930 | 15710 | 11400 | 13580 | |
| COP(W/W) | 3.16 | 3.31 | 3.38 | 3.37 | 3.26 | 3.20 | |
| Nominal Operating Current(A) | 10.8 | 12.8 | 15.8 | 17.6 | 20.5 | 26.3 | |
| LRA(A) | 116 | 119 | 125 | 154 | 174 | 174 | |
| MOC(A) | 16.3 | 17.5 | 22.5 | 25.3 | 27.8 | 31.4 | |
| Fitting OD Size (Inch) | Dis.Tube | 1/2 | 1/2 | 7/8 | 7/8 | 7/8 | 7/8 |
| Suc.Tube | 7/8 | 7/8 | 1 3/8 | 1 3/8 | 1 3/8 | 1 3/8 | |
| Dimension (mm) | (L)*(W)*(H) | 240x240x461 | 260x280x495 | 260x280x551 | 260x280x551 | 260x280x570 | 260x280x570 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | POE | POE | POE | POE | POE | POE | |
| Lubrication Oil Initial Charge (L) | 1.8 | 1.8 | 3.0 | 3.0 | 3.2 | 3.2 | |
| Lubrication Oil Recharge (L) | 1.8 | 1.8 | 3.0 | 3.0 | 3.2 | 3.2 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Low Pressure Side | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
| Weight (Kg) | 41 | 58 | 63 | 63 | 67 | 67 | |
| Model | RB15KM-PFJ-GN1 | RB19KM-PFJ-GN1 | RB22KM/E-PFJ-GN1 | RB15KM-TFD-GN1 | RB19KM-TFD-GN1 | RB22KM/E-TFD-GN1 | RB29KM/E-TFD-GN1 | RB40KM/E-TFD-GN1 | |
| Motor Power | 220~240V/50Hz/1ph | 380~420V/50Hz/3ph | |||||||
| Nominal Power(HP) | 2 | 2.5 | 3 | 2 | 2.5 | 3 | 4 | 5 | |
| Displacement(m3/h) | 5.7 | 6.6 | 8.4 | 5.7 | 6.8 | 8.4 | 11.6 | 14.7 | |
| Refrigerant | R22 | R22 | R22 | R22 | R22 | R22 | R22 | R22 | |
| Nominal Capacity(W) | 3407 | 3850 | 4700 | 3400 | 3840 | 4650 | 6700 | 7850 | |
| Nominal Input Power(W) | 1370 | 1510 | 1950 | 1365 | 1480 | 1940 | 2560 | 3250 | |
| COP(W/W) | 2.48 | 2.55 | 2.41 | 2.49 | 2.59 | 2.39 | 2.61 | 2.41 | |
| Nominal Operating Current(A) | 11.2 | 12.5 | 14.6 | 4.1 | 4.4 | 5.6 | 7.1 | 9.3 | |
| LRA(A) | 58 | 61 | 77 | 26 | 32 | 46 | 60 | 66 | |
| MOC(A) | 15 | 18 | 21 | 5.8 | 6 | 8 | 10 | 13 | |
| Fitting OD Size (Inch) | Dis. Tube | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| Suc. Tube | 3/4 | 3/4 | 3/4 | 3/4 | 3/4 | 3/4 | 7/8 | 7/8 | |
| Dimension (mm) | (L)*(W)*(H) | 240x240x382 | 240x240x382 | 244x244x405 | 240x240x382 | 240x240x382 | 244x244x405 | 240x240x436 | 240x240x456 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | |
| Lubrication Oil Initial Charge (L) | 1.22 | 1.35 | 1.43 | 1.22 | 1.35 | 1.43 | 1.35 | 2.03 | |
| Lubrication Oil Recharge (L) | 1.22 | 1.35 | 1.43 | 1.22 | 1.35 | 1.43 | 1.35 | 2.03 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Low Pressure Side | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| Weight(Kg) | 23.5 | 24.7 | 26.9 | 23.5 | 24.7 | 26.9 | 33.6 | 38.4 | |
| Crankcase Heater (W) | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | |
| Model | RB45KM/E-TFD-GN1 | RB48KM/E-TFD-GN1 | RB58KM/E-TFD-GN1 | RB76KM/E-TFD-GN1 | RB89KM/E-TFD-GN1 | RB96KM/E-TFD-GN1 | RB110KM/E-TFD-GN1 | |
| Motor Power | 380~420V/50Hz/3ph | |||||||
| Nominal Power(HP) | 6 | 7 | 8 | 10 | 12 | 13 | 15 | |
| Displacement(m3/h) | 17.7 | 19.4 | 22.9 | 29.5 | 34.3 | 36.3 | 42.8 | |
| Refrigerant | R22 | R22 | R22 | R22 | R22 | R22 | R22 | |
| Nominal Capacity(W) | 8900 | 9550 | 11850 | 17800 | 18900 | 21800 | 24600 | |
| Nominal Input Power(W) | 3730 | 4100 | 4850 | 6350 | 7200 | 8250 | 9700 | |
| COP(W/W) | 2.38 | 2.32 | 2.33 | 2.81 | 2.62 | 2.64 | 2.53 | |
| Nominal Operating Current(A) | 11.4 | 12.1 | 15.7 | 19.1 | 21.2 | 22.9 | 26.6 | |
| LRA(A) | 81 | 110 | 117 | 122 | 129 | 149 | 188 | |
| MOC(A) | 16 | 17 | 22 | 27 | 30 | 31 | 37 | |
| Fitting OD Size (Inch) | Dis. Tube | 1/2 | 3/4 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 |
| Suc. Tube | 7/8 | 7/8 | 1-1/8 | 1-3/8 | 1-3/8 | 1-3/8 | 1-3/8 | |
| Dimension (mm) | (L)*(W)*(H) | 240x240x456 | 240x240x461 | 260x280x495 | 260x280x551 | 260x280x551 | 260x280x570 | 260x280x570 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | 3GS | |
| Lubrication Oil Initial Charge (L) | 1.92 | 1.78 | 2.49 | 3.23 | 3.23 | 3.25 | 3.25 | |
| Lubrication Oil Recharge (L) | 1.92 | 1.78 | 2.49 | 3.23 | 3.23 | 3.25 | 3.25 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Low Pressure Side | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| Weight(Kg) | 40.5 | 40.9 | 58.1 | 62.5 | 62.7 | 62.8 | 67.1 | |
| Crankcase Heater (W) | 70 | 70 | 90 | 90 | 90 | 90 | 90 | |
| Model | RB15KM-PFJ-GN2 | RB19KM-PFJ-GN2 | RB22KM/E-PFJ-GN2 | RB15KM-TFD-GN2 | RB19KM-TFD-GN2 | RB22KM/E-TFD-GN2 | RB29KM/E-TFD-GN2 | RB40KM/E-TFD-GN2 | |
| Motor Power | 220~240V/50Hz/1ph | 380~420V/50Hz/3ph | |||||||
| Nominal Power(HP) | 2 | 2.5 | 3 | 2 | 2.5 | 3 | 4 | 5 | |
| Displacement(m3/h) | 5.7 | 6.6 | 8.4 | 5.7 | 6.8 | 8.4 | 11.6 | 14.7 | |
| Refrigerant | R404A | R404A | R404A | R404A | R404A | R404A | R404A | R404A | |
| Nominal Capacity(W) | 3200 | 3600 | 4550 | 3200 | 3550 | 4500 | 6500 | 7560 | |
| Nominal Input Power(W) | 1542 | 1699 | 2350 | 1540 | 1690 | 2330 | 2950 | 3550 | |
| COP(W/W) | 2.07 | 2.11 | 1.93 | 2.07 | 2.1 | 1.93 | 2.2 | 2.12 | |
| Nominal Operating Current(A) | 11.4 | 13.1 | 14.9 | 4.2 | 4.5 | 5.8 | 7.3 | 9.4 | |
| LRA(A) | 58 | 61 | 77 | 26 | 32 | 46 | 60 | 66 | |
| MOC(A) | 15 | 18 | 22 | 5.8 | 6 | 8 | 10 | 13 | |
| Fitting OD Size (Inch) | Dis. Tube | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
| Suc. Tube | 3/4 | 3/4 | 3/4 | 3/4 | 3/4 | 3/4 | 7/8 | 7/8 | |
| Dimension (mm) | (L)*(W)*(H) | 240x240x382 | 240x240x382 | 244x244x405 | 240x240x382 | 240x240x382 | 244x244x405 | 240x240x436 | 240x240x456 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | POE | POE | POE | POE | POE | POE | POE | POE | |
| Lubrication Oil Initial Charge (L) | 1.22 | 1.35 | 1.43 | 1.22 | 1.35 | 1.43 | 1.35 | 2.03 | |
| Lubrication Oil Recharge (L) | 1.22 | 1.35 | 1.43 | 1.22 | 1.35 | 1.43 | 1.35 | 2.03 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Low Pressure Side | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| Weight(Kg) | 23.5 | 24.7 | 26.9 | 23.5 | 24.7 | 26.9 | 33.6 | 38.4 | |
| Crankcase Heater (W) | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | |
| Model | RB45KM/E-TFD-GN2 | RB48KM/E-TFD-GN2 | RB58KM/E-TFD | RB76KM/E-TFD | RB89KM/E-TFD | RB96KM/E-TFD | RB110KM/E-TFD | |
| Motor Power | 380~420V/50Hz/3ph | |||||||
| Nominal Power(HP) | 6 | 7 | 8 | 10 | 12 | 13 | 15 | |
| Displacement(m3/h) | 17.7 | 19.4 | 22.9 | 29.5 | 34.3 | 36.3 | 42.8 | |
| Refrigerant | R404A | R404A | R404A | R404A | R404A | R404A | R404A | |
| Nominal Capacity(W) | 8600 | 9500 | 11800 | 17200 | 18450 | 21300 | 23000 | |
| Nominal Input Power(W) | 3950 | 4550 | 5600 | 7450 | 7495 | 9500 | 11310 | |
| COP(W/W) | 2.17 | 2.08 | 2.1 | 2.3 | 2.46 | 2.24 | 2.03 | |
| Nominal Operating Current(A) | 11.6 | 12.3 | 16 | 19.5 | 21.7 | 23.7 | 27.2 | |
| LRA(A) | 81 | 110 | 117 | 122 | 129 | 149 | 188 | |
| MOC(A) | 16 | 17 | 22 | 27 | 30 | 31 | 37 | |
| Fitting OD Size (Inch) | Dis. Tube | 1/2 | 3/4 | 7/8 | 7/8 | 7/8 | 7/8 | 7/8 |
| Suc. Tube | 7/8 | 1-1/8 | 1-3/8 | 1-3/8 | 1-3/8 | 1-3/8 | ||
| Dimension (mm) | (L)*(W)*(H) | 240x240x456 | 240x240x461 | 260x280x495 | 260x280x551 | 260x280x551 | 260x280x570 | 260x280x570 |
| Mounting Dimension (Dia.)(mm) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | 190X190(Ø8.5) | |
| Lubrication Oil | POE | POE | POE | POE | POE | POE | POE | |
| Lubrication Oil Initial Charge (L) | 1.92 | 1.78 | 2.49 | 3.23 | 3.23 | 3.25 | 3.25 | |
| Lubrication Oil Recharge (L) | 1.92 | 1.78 | 2.49 | 3.23 | 3.23 | 3.25 | 3.25 | |
| Max. Operating Pressures (MPa) | High Pressure Side | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| Low Pressure Side | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
| Weight(Kg) | 40.5 | 40.9 | 58.1 | 62.5 | 62.7 | 62.8 | 67.1 | |
| Crankcase Heater (W) | 70 | 70 | 90 | 90 | 90 | 90 | 90 | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Standard |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 1000/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2023-12-27
China Hot selling R134A 48V BLDC Rotary Compressor 4000BTU for Industrial Small Cabinet Air Condicioning air compressor lowes
Product Description
R134a 48v bldc rotary compressor 4000btu for industrial small cabinet air condicioning
Product Description
FS CHINAMFG DC rotary inverter refrigeration compressor dc 12v ,24v,48v ,72V,96V with envoriment friendly refrigerant R134a,hase advantage as extremely small size,fast coolng down,precisely control and variable application.
| Name | DC 48v 1000watt air conditioner compressor |
| Brand | FS THERMO |
| Model | FSQX089Z48 |
| Voltage | DC 48v |
| Refrigerant | R134A |
| Net weight | 4.7kg |
| Cooling capacity | 4350 BTU |
| Controller Board | Variable frequency controller |
| MOQ | 1Piece |
| Certification | ISO,CE |
| Payment | T/T 30% deposit,70% balance before shipment |
| Packing | Standard packing or according to client’s requirement |
| Transportation | By sea/air or as request |
| Delivery port | HangZhou PORT/ZheJiang PORT |
| Delivery Time | 15-20 days after receipt of T/T 30% deposit |
| Business Type | Professional DC rotary compressor factory/manufacturer |
| Producttion Capacity | 30000 units per month |
| Place of Origin | zHangZhoug China (Mainland) |
production show
SERIAL MODLES
| DC Model | Power supply | Mount Type | Application | Displacement | ASHRAE (7.2ºC) | POWER | Speed Range | |
| Cooling Capacity | ||||||||
| cm3 | W | Btu/h | W | RPM/min | ||||
| FSQX14Z12 | DC 12V | vertical | LBP/MBP/HBP | 1.4 | 250 | 850 | 92 | 2000~5400 |
| FSQX14Z48 | DC 48V | vertical | LBP/MBP/HBP | 1.4 | 252 | 853 | 93 | 2000~5400 |
| FSQX19Z12 | DC 12V | vertical | LBP/MBP/HBP | 1.9 | 300 | 1571 | 130 | 2000~6000 |
| FSQX19Z24 | DC 24V | vertical | LBP/MBP/HBP | 1.9 | 310 | 1057 | 118 | 2000~6000 |
| FSQX19Z48 | DC 48V | vertical | LBP/MBP/HBP | 1.9 | 310 | 1057 | 118 | 2000~6000 |
| FSQA571Z12 | DC 12V | vertical | LBP/MBP/HBP | 2.7 | 410 | 1382 | 145 | 2000~5400 |
| FSQA571Z24 | DC 24V | vertical | LBP/MBP/HBP | 2.7 | 460 | 1570 | 195 | 2000~5000 |
| FSQX325Z24 | DC 24V | vertical | LBP/MBP/HBP | 3.25 | 550 | 1875 | 212 | 2000~4500 |
| FSQX089Z48 | DC48V | vertical | MBP/HBP | 8.9 | 1500 | 5115 | 380 | 1800~4800 |
| FSQA120 | DC48/72/96V | Vertical | MBP/HBP | 12 | 1625 | 5542 | 525 | 2000~4500 |
| FSQA036Z48 | DC 48V | vertical | MBP/HBP | 3.6 | 500 | 1705 | 164 | 1800~4500 |
| FSQA073Z24 | DC 24V | vertical | MBP/HBP | 7.3 | 1571 | 3500 | 312 | 1800~4500 |
| FSQA135Z24 | DC 24 | vertical | MBP/HBP | 13.5 | 1950 | 6650 | 965 | 2000~4500 |
| FSQA058Z48 | DC 48V | Horizontal | MBP/LBP | 5.8 | 620 | 2115 | 204 | 1800~4800 |
| FSQA088Z48 | DC 48V | Horizontal | MBP/LBP | 8.8 | 890 | 3035 | 366 | 1800~4500 |
| FSQA150Z48 | DC 48V | Horizontal | MBP/LBP | 15 | 2080 | 7093 | 690 | 1800~4500 |
| WF180HD48 | DC 48V | Horizontal | MBP/HBP | 18 | 2510 | 8550 | 770 | 1800~4500 |
| WF180HD72 | DC 72V | Horizontal | MBP/HBP | 18 | 2510 | 8550 | 770 | 1800~4500 |
| WF180HD312 | DC 312V | Horizontal | MBP/HBP | 18 | 2510 | 8550 | 770 | 1800~4500 |
| WF280HD312 | DC 312V | Horizontal | MBP/HBP | 28 | 4000 | 13640 | 1200 | 1800~4500 |
Main Features
1) With low noise and vibration, high efficiency and energy saving.
2) With strongly connection, good sealing, high level of protection.
3) With mature manufacturing of double rotor and mass production
Applicaiton
Portable cooling system, miniature refrigeration/freezer systems, electronics cooling system, Medical imaging equipment, Beverage cooling, Mini-chilled water system
Package and shipping
Sample order:
Each compressor was packaged in 1 carton box and non-fumigated wooden box.
Delivery time: Generally we have samples on stock. We can deliver as soon as receiving the payment.
Large order:
The compressors will be packaged in non-fumigated pallets.
Port:HangZhou or ZheJiang
Company Info
FS CHINAMFG is a HVAC&R CHINAMFG company who focus on the heating and cooling products designing, Production and marketing more than 15 years. We have serviced and cooperated with more than 100 customers in the global market. Our main product is CHINAMFG heat exchanger, compressor, and integrated refrigeration unit, special Chiller unit and custom CHINAMFG solution.The products including the Cooling module for chamber, Liquid Chiller Unit for batter cooling , cooling compressors , We always providing and investing innovational HVAC&R technology to enhance the customer experience and help us become a better business partner to you.
FAQ
1. What is the MOQ?
The MOQ is 1 piece.
2. What is the delivery time?
10days after payment for sample order, and 25days for bulk order.
3. What is the shipping port?
HangZhou or ZheJiang port.
4. What is the payment method?
We can accept T/T, Western Union, Paypal, L/C, etc.
5. What is our main product?
• air conditioning compressor,220v,110v,100v ,50/60hz
• Mini DC 12V/24V/48V compressor
• DC 12V/24V/48V/72V/312V compressor
• Mini chillier module , Mini condensing unit
• spot cooling system
• Rotary compressor for industry cooling , Dehumidifyer , water gen.
• Refrigeration compressor & Condensing unit for commercial refrigeration & transport refrigeration
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Installation Type: | Stationary Type |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-12-26
China supplier Top Seller 12V Fast Electric Portable Car USB Mini Air Compressor Pump for Car Tires Inflation lowes air compressor
Product Description
| Year | Universal | Certification | CE,ROHS |
| Voltage | 12V | Size | 19.3*15.5*7.4cm |
| Max Pressure |
101-150Psi |
Item | Heavy Duty Digital Tire Inflator |
| Function | Power Indicator, Tire Pressure Monitor, Heavy Duty | Air volume | 27L/min |
| Type | 12v Digital Tire Inflator | Weight | 0.95kg |
| Material | Metal | Power | 120W |
| Application | Inflate Air Products | Color | Black |
Why Choose Us
Rich product experience
about 11years specilied in power supply engineering.
Professional R&D team
have a professional team and extensive cooperation with universities.
Quality assurance
have a strict quality management system and our products have passed ISO,CQC certification.
Attentive service
providing lifetime technical service and at least 12-month warranty and we accept OEM and ODM services.
Company Profile
ZheJiang EDSUN ELECTRICAL SCIENCE AND TECHNOLOGY CO.,LTD, established in 2011 and located in HangZhou CITY,ZheJiang PROVINCE. EDSUN is a professional company engaged in the manufacture of power supply systems and power supply device for the power supply engineering , and also focus on research, manufacturing, marketing and after-service of DC Power Supply ,Power Supply Equipment, Portable ev charger,car jump starter ,portable power station, Home energy storage system ,lifepo4 home energy storage battery ,inverter,solar panel,ups power ,emergency backup power supply ,battery charger,vehicle parts &accessories etc. Along with its rapid development recent years, we have the production workshop and research laboratory around 2000 square meters, 6 cycle production lines and 6 cycle test lines. Our company has registered the trademarks of “EDSUN, DURANT, LECXIHU (WEST LAKE) DIS.CHE”, owned 10 software copyrights, 9 utility model patents and 3 invention patents with highly reputation in domestic and overseas. At the same time, we are dedicated to strict quality control and thoughtful customer service and obtained I S O 9 0 0 1, I S O 4 5 0 0 1, I S O 1 4 0 0 1 , 3 A class and CE certificates. And our company even has established extensive cooperation and further communication with colleges, universities, and research institutions, it has formed a school-enterprise scientific research alliance to achieved great results. Never being satisfied and keep making progress is the core spirit of EDSUN, and we will still insist on contributing its strength to our country and even for the world in the field of Power Supply, ev charger ,home energy storage.auto parts
FAQ
A) How could I get a sample? You will be charged a sample price plus all related shipping costs. Express delivery charge depends on the quantity of the samples.
B)What can you buy from us? Intelligent Control System, Direct Current Power Supply,Power Supply Equipment, Portable Charging Pile, All kinds of Automatic Components,
C)Why should you buy from us not from other suppliers?
we can provide affordable prices, reliable quality, customized service, professional after-service.
D)What services can we provide? MOQ:One sample order is available. Delivery terms:EXW, FOB, CIF. Packing:standard export packing,including instructions and certificate. OEM/ODM is available. Shipment:Express(Fedex, DHL, UPS &TNT)or forwarder Warranty:At least 1 year free repair for quality warranty, and lifetime free online after-service
E)How can we guarantee quality? Strict detection during production. Strict sampling inspection on products before shipment and intact product packaging ensured.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 6 Months |
| Certification: | RoHS, CE |
| Samples: |
US$ 20/Set
1 Set(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-25
China supplier Glcy1050 Screw Air Compressor (23bar, 29m3/min) lowes air compressor
Product Description
Screw Air compressor
Diesel portable air compressor:
1.Low operating sound and less vibration design.Easy serviceability.
2.Low fuel consumption to realize far distance outdoor usage;Full protection system,energy saving.
3.High efficient Airend: Large diameter rotor, airend connect with diesel engine through coupling and no reduction gear inside,more reliability, the rotate speed is same with the CHINAMFG brand, satisfy the emission requirement of Europe,low oil consumption, after sale service system all over China.
5.Good adaptability: The Air Compressor automatically control the air delivery of diesel engine by matching the demand of air consumption, which equals to frequency conversion control in motor power screw air compressor.
Advanges of Air Compressor:
1.Air filteration system: High efficient air inlet filter to prevent motor and airend rotors damaged by dirt particles
2.High efficient airend: Large rotors design and large bearings are used to ensure low RPM.This ensured low operating sound minimal vibration and extended operating life
3.Modulation Control: Based on air demang,the modulation valve will control the inlet air capacity and diesel enginer RPM to minimize the fuel consumption . Its features maximum energy saving.
4.Control panel: easy to control; high water temperature alarm , high pressure alarm ,high discharge air temperature alarm and high RPM alarm are all part of it’s features.
5.Diesel Engine: Using well known diesel engine like Yuchai, this ensure superior performance and reliablity of the compressor.
6.Cooler: Larger cooler and fan design to ensure maximum cooling especially for the extreme operating environment.
| Specification | |
| Model | GLCY1050 |
| Air delivery ( m3/min) | 29 |
| Working pressure ( Mpa) | 2.3MPa |
| Weight(kg) | 5000 |
| Size(mm) | 3500*1950*2030mm |
Company Profile:
Glorytek Industry (ZheJiang ) Co., Ltd. is an integrated corporation specialized in manufacturing and exporting top quality drilling equipment and drilling parts for more than 20 years. We are supported and assisted by highly experienced R&D team and enginners that enable us to complete all the assigned projects successfully as per clients’ requirements.
Our factory covers an area of 250,000 square meters, construction area is about 150,000 square meters, having machining machinery, CNC processing center, friction welding machine, testing equipments etc. over 200 sets and more than 600 employees.
Our products have been exported more than 60 countries, including Australia, Russia, Soutn Africa, Zimbabwe, Malaysia, Indonesia, South Korea, France, Sweden, USA, Canada, Haiti etc.
After-Sale Service:
* Training how to instal the machine, training how to use the machine.
* Engineers available to service machinery overseas.
FAQ
Q: Are you a factory or a trading company?
A: We are an integrated corporation specialized in manufacturing and exporting.
Q: What is your payment terms?
A: We can accept T/T,L/C.
Q:.What is your MOQ? How long is the delivery time?
A: Our MOQ is 1 sets. Normally for drill rig, the delivery time is about 25-30 days after receiving payment, the drilling tools would be about 15 days.
Q:. How long is the warranty?
A: The guarantee period for mainframe is 1 year (excluding the quick wear parts).
Q: Can we print my Logo on the products?
A: Yes, we can. We support OEM .
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-12-25
China Custom CHINAMFG Official 7.5kw General Industrial Direct Driven Screw Air Compressor for Sale air compressor lowes
Product Description
XCMG Official 7.5kw General Industrial Direct Driven Screw Air Compressor
Product Description
Noise enclosure
It is designed into fully-closed mute box, in which sound-absorbing sponge are attached for effective absorption of noise,thereby making the noise 3-5dB(A) lower than that made by the compressors of the same kind.It is reasonably structured overall and very easy to maintain and repair.
Control Panel
Intelligent microcomputer-based control technology can monitor and control in all aspects the complete machine following your instructions. Remote control realizes unattended operation, and the user-friendly human-machine interface displays instructions and parameters in written form. Also, it can function to self diagnose faults,give warning and automatically regulate the capacity.
Motor
First-class motors are adopted, with the level of protection being Ip54 and insulation level being F.overall and very easy to maintain and repair.
Cooler
It is designed for low temperature difference to increase heat exchange area, and ideal to be applied to high-temperature and high-humidity operating environment.
Configuration characteristics
1. A precisely-made central bracket is used to keep the motor aligned permanently with the bare compressor
2. A highly resilient coupling is adopted to make the compressor operate smoothly, and the elastomer is long in useful life
3. The exhaust pipe adopts double-layer bellows, and the oil circuit adopts specially-made temperature-resistant 125º C high-pressure hose
4. For the extremely high temperature condition in some districts, the large-area plate heat exchange and high-efficiency water chiller are used
5. High-quality shaft coupling elastic body can buffer and compensate for the imbalanced moment of operation.
Product Parameters
|
Model |
Air flow |
pressure |
Motor power |
Caliber |
Noise |
Cooling air volume |
Cooling water |
|
m ³/min |
MPa |
kW |
dB(A) |
m ³/min |
L/min |
||
|
LA-7GA |
1.35 |
0.7 |
7.5 |
G1/2 |
62±2 |
32.5 |
|
|
1.25 |
0.8 |
||||||
|
1.01 |
1 |
||||||
|
0.9 |
1.25 |
||||||
|
LA-11GA |
1.8 |
0.7 |
11 |
G3/4 |
63±2 |
50 |
|
|
1.78 |
0.8 |
||||||
|
1.55 |
1 |
||||||
|
1.3 |
1.25 |
||||||
|
LA-15GA |
2.5 |
0.7 |
15 |
G3/4 |
63±2 |
50 |
|
|
2.4 |
0.8 |
||||||
|
2.1 |
1 |
||||||
|
1.8 |
1.25 |
||||||
|
LA-18GA |
3.1 |
0.7 |
18.5 |
G1 |
64±2 |
100 |
|
|
3 |
0.8 |
||||||
|
2.7 |
1 |
||||||
|
2.3 |
1.25 |
||||||
|
LA-22GA/W |
3.8 |
0.7 |
22 |
G1 |
64±2 |
110 |
14.5 |
|
3.7 |
0.8 |
||||||
|
3.2 |
1 |
||||||
|
2.8 |
1.25 |
||||||
|
LA-30GA/W |
5.4 |
0.7 |
30 |
G1 |
65±2 |
145 |
20 |
|
5.25 |
0.8 |
||||||
|
4.5 |
1 |
||||||
|
3.9 |
1.25 |
||||||
|
LA-37GA/W |
6.6 |
0.7 |
37 |
G1 ½ |
65±2 |
145 |
25 |
|
6.6 |
0.8 |
||||||
|
5.9 |
1 |
||||||
|
4.8 |
1.25 |
||||||
|
LA-45GA/W |
8.4 |
0.7 |
45 |
G1 ½ |
66±2 |
185 |
30 |
|
8 |
0.8 |
||||||
|
7.4 |
1 |
||||||
|
6.4 |
1.25 |
||||||
|
LA-55GA/W |
10.8 |
0.7 |
55 |
G2 |
68±2 |
220 |
39.9 |
|
10 |
0.8 |
||||||
|
9.1 |
1 |
||||||
|
8 |
1.25 |
||||||
|
LA-75GA/W |
13.8 |
0.7 |
75 |
G2 |
72±2 |
250 |
51 |
|
13 |
0.8 |
||||||
|
11.8 |
1 |
||||||
|
10.3 |
1.25 |
||||||
|
LA-90GA/W |
17.1 |
0.7 |
90 |
G2 |
72±2 |
270 |
61 |
|
17 |
0.8 |
||||||
|
15.2 |
1 |
||||||
|
12.5 |
1.25 |
||||||
|
LA-110GA/W |
21.2 |
0.7 |
110 |
G2 1/2 |
75±2 |
420 |
79 |
|
20 |
0.8 |
||||||
|
17.1 |
1 |
||||||
|
15.4 |
1.25 |
||||||
|
LA-132GA/W |
25 |
0.7 |
132 |
G2 1/2 |
75±2 |
460 |
91 |
|
24.3 |
0.8 |
||||||
|
21 |
1 |
||||||
|
17.5 |
1.25 |
||||||
|
LA-160GA/W |
30.5 |
0.7 |
160 |
G2 1/2 |
75±2 |
510 |
105 |
|
29.2 |
0.8 |
||||||
|
26.9 |
1 |
||||||
|
22.5 |
1.25 |
||||||
|
LA-185GA/W |
32.9 |
0.7 |
185 |
G2 1/2 |
75±2 |
510 |
123 |
|
31.9 |
0.8 |
||||||
|
29.1 |
1 |
||||||
|
25.5 |
1.25 |
||||||
|
LA-220GA/W |
37 |
0.7 |
220 |
DN80 |
75±2 |
710 |
144 |
|
36.3 |
0.8 |
||||||
|
31.63 |
1 |
||||||
|
28.55 |
1.25 |
||||||
|
LA-250GA/W |
45.8 |
0.7 |
250 |
DN80 |
75±2 |
800 |
163 |
|
44 |
0.8 |
||||||
|
39 |
1 |
||||||
|
35.5 |
1.25 |
Product Picture
Company Profile
FAQ
1: What kind terms of payment can be accepted?
A: For terms of payment, L/C, T/T, D/A, D/P, Western Union (can be) could accepted.
2: What certificates are available in Machinery?
A: For the certificate, we have CE, ISO, Gost, EPA(USA)CCC.
3: What about the delivery time?
A: 7-30 days after receiving the deposit.
4: What about the warranty time?
A: 12 months after shipment or 2000 working hours, whichever occuts first.
5. What about the Minimum Order Quantity?
A: The MOQ is 1 pcs.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Overseas Service Center Available |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-12-21
China Hot selling 15HP Cheap Electric Energy Saving Rotary Screw Type Compressor Pm VSD Variable Speed Rotary Air Compressor air compressor lowes
Product Description
FAQ
Q1: Are you factory or Trade Company?
A1: We are factory of HangZhou, ZheJiang . We have our own trade company for export.
Q2:Warranty terms of your machine?
A2: 18 months warranty for the machine,technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes.We provide spare parts for daily maintenance.
Q4: What voltage can you provide?
A4: We can support 220V/380V/400V/415V/440V/480V/570V/600V 50HZ/60HZ
Q5: How long will you take to arrange production?
A5: Deliver standard goods within 3-5days, Other customized goods need to be decided.
Q6: How to pay?
A6: We support T/T or LC/Western Union/Money Gram. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Spare Parts |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-12-18