Product Description
Product Description
In response to market requirements, CHINAMFG company has launched oil-free screw air compressors, which are classified into oil-free piston machines, oil-free water-lubricated screw air compressors, and dry oil-free air compressors. There are many products. Welcome to consult.
Our advantages
1. Imported top-grade main machine, as the third generation product of state-of -the art brand the world, with asymmetrical 5:6 tooth rotor, is provided with outstanding performance and high efficiency far beyond other similar-type brand.
2. Full-intellectual control system and LCD screen, with self-diagnosis and protection devices, remote control and multi-host interlocking control, realizing unattended and high-tech operation.
3. Y series three-phase asynchronous motor special for compressor, imported World famous brand bearing, F-level insulation, IP54 especially suitable for long-term use, safe and reliable.
4 .Imported oil filter, oil gas separation filter element, ternary separation, ensure oil content less than 0.001ppm, the trunk adopts metal pipe, safe for long -term operation without leakage or deformation, the V type drive belt is imported from Germany, and has a service life more than10000hous.
5.Air volume auto intelligent control, auto shutdown after over long idle run, ensure over 25% of energy saving.
6.Valve-free oil system design, achieving a safer and more reliable operation of the whole machine, main machine adopts imported special compressor oil, reducing leakage inside and outside the compressor, improving efficiency of main machine and prolonging service life.
Product Parameters
| Water lubricated 100% oil-free air compressor Compresor de aire 100% exento de aceite lubricado con agua |
||||||||||
| Model Modelo |
Working Pressure | Air Delivery | Motor Power | Dimension(mm) | Weight(kg) | Output pipe Diameter | ||||
| psig | bar | cfm | m3/min | kw/hp | L | W | H | |||
| ZW-7A | 100 | 7 | 38.8 | 1.1 | 7.5/10 | 1300 | 800 | 1300 | 500 | 3/4″ |
| 116 | 8 | 35.3 | 1 | |||||||
| 145 | 10 | 30 | 0.85 | |||||||
| 181 | 12.5 | 24.7 | 0.7 | |||||||
| ZW-11A | 100 | 7 | 63.6 | 1.8 | 11/15/ | 1300 | 800 | 1300 | 540 | 1″ |
| 116 | 8 | 58.3 | 1.65 | |||||||
| 145 | 10 | 53 | 1.5 | |||||||
| 181 | 12.5 | 45.9 | 1.3 | |||||||
| ZW-15A | 100 | 7 | 84.7 | 2.4 | 15/20 | 1620 | 1004 | 1410 | 650 | 1″ |
| 116 | 8 | 77.7 | 2.2 | |||||||
| 145 | 10 | 74.2 | 2.1 | |||||||
| 181 | 12.5 | 63.6 | 1.8 | |||||||
| ZW-18A | 100 | 7 | 109.5 | 3.1 | 18.5/25 | 1600 | 910 | 1350 | 840 | 1″ |
| 116 | 8 | 102.4 | 2.9 | |||||||
| 145 | 10 | 95.3 | 2.7 | |||||||
| 181 | 12.5 | 81.2 | 2.3 | |||||||
| ZW-22A | 100 | 7 | 134.2 | 3.8 | 22/30 | 1450 | 1000 | 1560 | 870 | 1″ |
| 116 | 8 | 127.1 | 3.6 | |||||||
| 145 | 10 | 113 | 3.2 | |||||||
| 181 | 12.5 | 88.3 | 2.5 | |||||||
| ZW-30A | 100 | 7 | 187.1 | 5.3 | 30/40 | 1950 | 1050 | 1432 | 980 | 11/4″ |
| 116 | 8 | 176.6 | 5 | |||||||
| 145 | 10 | 151.8 | 4.3 | |||||||
| 181 | 12.5 | 127.1 | 3.6 | |||||||
| ZW-37A | 100 | 7 | 233 | 6.6 | 37/50 | 1700 | 1100 | 1630 | 1000 | 11/4″ |
| 116 | 8 | 218.9 | 6.2 | |||||||
| 145 | 10 | 201.3 | 5.7 | |||||||
| 181 | 12.5 | 162.4 | 4.6 | |||||||
| ZW-45A | 100 | 7 | 282.5 | 8 | 45/60 | 2150 | 1300 | 1590 | 1060 | 11/2″ |
| 116 | 8 | 271.9 | 7.7 | |||||||
| 145 | 10 | 243.6 | 6.9 | |||||||
| 181 | 12.5 | 211.9 | 6 | |||||||
| ZW-55A | 100 | 7 | 370.8 | 10.5 | 55/75 | 2200 | 1400 | 1540 | 1250 | 2″ |
| 116 | 8 | 346 | 9.8 | |||||||
| 145 | 10 | 307.2 | 8.7 | |||||||
| 181 | 12.5 | 257.8 | 7.3 | |||||||
| ZW-75A | 100 | 7 | 480.2 | 13.6 | 75/100 | 2400 | 1450 | 1740 | 1480 | 2″ |
| 116 | 8 | 459 | 13 | |||||||
| 145 | 10 | 409.6 | 11.6 | |||||||
| ZW-90A | 100 | 7 | 572 | 16.2 | 90/120 | 2550 | 1400 | 1605 | 2030 | DN50 |
| 116 | 8 | 547.3 | 15.5 | |||||||
| 145 | 10 | 494.3 | 14 | |||||||
Detailed Photos
| Brief Introduction of screw air compressor: | |
| Air end | Germany Technology. 30 Years Designed Lifetime |
| Motor Efficiency Class | Ultraefficient/IE3/IE4 as per your required |
| Motor Protection Class | IP23/IP54/IP55 or as per your required (100% rare earth permanent magnet motor) |
| Inverter | Chinese No. 1 Inverter or Denmark Inverter Can Save 30% Energy |
| Warranty | 5 Years for The Air End, and 2 Years for The Whole |
| Voltage | 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, 220V/1PH/60HZ/ dual voltage is also ok |
| Delivery time | 7-15 days |
| Certificate | CE/SGS/ISO9001/ASME |
| After-sales service | we have our professional after-sales technician to instruct the installation of the whole screw air compressor |
Main configuration
1 Motor- Germany
2 screw(air end)- Germany
3 Oil filter- Germany
4 Solenoid valve- Japan
5 Combination valve- Austria
6 AC contactor- Germany
7 Gas cooler- HangZhou, China
8 Oil cooler- HangZhou, China
9 Pressure controller- Japan
We offer free pipe and valves for installation and installation diagram
Company Profile
Brief introduction of factory:
1. our factory was established in 1985 which is specilized in manufacturing various types of air compressor and accessories.
2. our factory accept OEM air compressor power from 5.5kw to 315kw, 5hp to 355hp ;
3. Our products are exported to 132 countries and regions around the world;
4. Our air compressor provides a 5-year warranty.
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available
Promises Every Machine Will Run Well More Than 15 years
Recommended Products
CHINAMFG provides customers with one-stop purchasing to meet any customer needs.
In addition to variable frequency air compressors, direct driven screw air compressors, integrated air compressors, oil-free screw air compressors, we also have dryers and air receiver tank and other post-processing equipment.
Is a professional air treatment expert;)
Customer feedback
1.we have 30+ years professinal experience to producation and service,
2. not only give you air compressor, also support air compressor system solution ,
3. 1 to 1 service help you solve question quickly.
After Sales Service
1. Reply in 24 hours.
2. Providing professional solutions.
3. Every product will be tested before the delivery.
4. Delivery on time and excellent after-sales service.
5. High quality, reliable price.
Shipment :
FAQ
1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Support Online and Local Service |
|---|---|
| Warranty: | 2 Year for The Screw and 1 Year for The Whole Mach |
| Lubrication Style: | Lubricated |
| Cooling System: | No |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2024-02-09
China wholesaler Air Cooling 132kw Variable Speed Drive Mute Industrial AC Oil Free Dry Rotary Screw Air Compressor arb air compressor
Product Description
| Specification(VSD series) | ||||||
| Model | Capacity M3/min | Power kw | Noise level db | Weight KG | ||
| 3.5~10bar | Water Cooling | Air Cooling | ||||
| OFA1VSD | OFA15VSD | 1.1-3.3 | 15 | 74 | 930 | |
| OFA22VSD | 4.5-5.6 | 22 | 74 | 1150 | ||
| OFA30VSD | 4-6.6 | 30 | 74 | 1300 | ||
| OFW37VSD | 5-8.4 | 37 | 74 | 1600 | ||
| OFW45VSD | 6.1-11.1 | 45 | 74 | 1750 | ||
| OFA2VSD | OFA55VSD | 7.3-9.4 | 55 | 74 | 1900 | |
| OFA75VSD | 10.7-12.4 | 75 | 74 | 2630 | ||
| OFA90VSD | 12.7-15.4 | 90 | 74 | 2700 | ||
| OFA3VSD | OFA110VSD | 16.0-19.5 | 110 | 74 | ||
| OFA132VSD | 18.8-21.8 | 132 | 74 | 4300 | ||
| OFA160VSD | 24.0-29.6 | 160 | 74 | 4300 | ||
| OFA4VSD | OFA200VSD | 12.2-36.6 | 200 | 74 | ||
| OFA250VSD | 14.2-41.8 | 250 | 74 | 6950 | ||
| OFA275VSD | 15.8-47.4 | 275 | 74 | |||
| OFA315VSD | 45.0-52.1 | 315 | 74 | 6950 | ||
| OFA5VSD | OFA355VSD | 50.4-57.5 | 355 | 74 | ||
| OFW1VSD | OFW37VSD | 2-5.9 | 37 | 74 | ||
| OFW45VSD | 2.3-7 | 45 | 74 | |||
| OFW2VSD | OFW55VSD | 4.5-8.8 | 55 | 74 | ||
| OFW75VSD | 4.5-13.2 | 75 | 74 | 2170 | ||
| OFW90VSD | 4.5-15.5 | 90 | 74 | 2220 | ||
| OFW3VSD | OFW110VSD | 6.4-19.1 | 110 | 74 | ||
| OFW132VSD | 7.7-22.4 | 132 | 74 | 3500 | ||
| OFW160VSD | 14.5-42.9 | 160 | 74 | 3500 | ||
| OFW4VSD | OFW200VSD | 18-36.1 | 200 | 74 | ||
| OFW250VSD | 19.-38.4 | 250 | 74 | 6400 | ||
| OFW275VSD | 20.0-41.0 | 275 | 74 | |||
| OFW315VSD | 46.0-50.9 | 315 | 74 | 6650 | ||
| OFW5VSD | OFW355VSD | 50.4-56.3 | 355 | 74 | 6950 | |
| OFW400VSD | 55.8-62.1 | 400 | 74 | 7060 | ||
| OFW450VSD | 63.8-76.5 | 450 | 74 | 8400 | ||
| OFW500VSD | 73.1-83.9 | 500 | 74 | 8400 | ||
| OFW630VSD | 89.0-102.9 | 630 | 74 | 9125 | ||
| OFW750VSD | 101.8-122.8 | 750 | 74 | 9225 | ||
| Company Profile |
ZheJiang Napu compressor Technology Co.,LTD was established in 2012 based in ZheJiang ,specializing in oil-free rotary screw air compressors, offering a wide range of products from airends to compressors .
With over 10 years experience in oil free screw air compressor. NAPU Compressor is compliant with ISO 8573-1, Class 0 standard and audited by TUV Rheinland and China National Quality Inspection Center of Compressor and Refrigerator.
The company is also compliant with ISO 9001:14001 and is CHINAMFG in the domestic market for its quality-driven culture. The oil-free compressors manufactured by the company are used in a variety of sectors including some of our valued clients like CASC-China Aerospace Science Corporation, NORINCO-China North Industries Group, CNNC-China National Nuclear Group, CHANG AN AUTO, SINOPHARM, BYD and CALT and Sino-Chemical etc.
Continuous improvement in productivity and efficiency is our goal, and we continue to offer an extensive services including our own branded oil-free compressor package as well as after-sales services for other leading brands.
| Product Features |
1. In house designed airend
2. 100% oil free air certified by Germany TUV.
3. Double-layer structure to reduce he noise.
4. Air Cooling and Water cooling are available.
5. VSD control are available.
6.Touch Screen PLC with preset running schedule, more intelligent control.
7.OEM&ODM service are accepted
| FAQ |
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of oil free air compressors. More than 20 years of experience in air compressor manufacturing.
Q2. What’s payment term ?
A: T/T, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q3. How about your after-sales service ?
A: 1.We can provide customers with installation and commissioning online instructions.
Q4. How about your warranty?
A: One year for the whole machine and 5 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, we can offer CE ,ISO and certificate as clients’ demande.
Q6. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Each compressor must pass at least 8 hours of continuous testing before leaving the factory.
Q7.How long could your air compressor be used?
A: Usually, more than over 10 years.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-01-17
China Hot selling 200kw Water Cooling VSD Silent High Efficiency Rotary Screw Industrial Oil Free Dry Air Compressor small air compressor
Product Description
| Specification(VSD series) | ||||||
| Model | Capacity M3/min | Power kw | Noise level db | Weight KG | ||
| 3.5~10bar | Water Cooling | Air Cooling | ||||
| OFA1VSD | OFA15VSD | 1.1-3.3 | 15 | 74 | 930 | |
| OFA22VSD | 4.5-5.6 | 22 | 74 | 1150 | ||
| OFA30VSD | 4-6.6 | 30 | 74 | 1300 | ||
| OFW37VSD | 5-8.4 | 37 | 74 | 1600 | ||
| OFW45VSD | 6.1-11.1 | 45 | 74 | 1750 | ||
| OFA2VSD | OFA55VSD | 7.3-9.4 | 55 | 74 | 1900 | |
| OFA75VSD | 10.7-12.4 | 75 | 74 | 2630 | ||
| OFA90VSD | 12.7-15.4 | 90 | 74 | 2700 | ||
| OFA3VSD | OFA110VSD | 16.0-19.5 | 110 | 74 | ||
| OFA132VSD | 18.8-21.8 | 132 | 74 | 4300 | ||
| OFA160VSD | 24.0-29.6 | 160 | 74 | 4300 | ||
| OFA4VSD | OFA200VSD | 12.2-36.6 | 200 | 74 | ||
| OFA250VSD | 14.2-41.8 | 250 | 74 | 6950 | ||
| OFA275VSD | 15.8-47.4 | 275 | 74 | |||
| OFA315VSD | 45.0-52.1 | 315 | 74 | 6950 | ||
| OFA5VSD | OFA355VSD | 50.4-57.5 | 355 | 74 | ||
| OFW1VSD | OFW37VSD | 2-5.9 | 37 | 74 | ||
| OFW45VSD | 2.3-7 | 45 | 74 | |||
| OFW2VSD | OFW55VSD | 4.5-8.8 | 55 | 74 | ||
| OFW75VSD | 4.5-13.2 | 75 | 74 | 2170 | ||
| OFW90VSD | 4.5-15.5 | 90 | 74 | 2220 | ||
| OFW3VSD | OFW110VSD | 6.4-19.1 | 110 | 74 | ||
| OFW132VSD | 7.7-22.4 | 132 | 74 | 3500 | ||
| OFW160VSD | 14.5-42.9 | 160 | 74 | 3500 | ||
| OFW4VSD | OFW200VSD | 18-36.1 | 200 | 74 | ||
| OFW250VSD | 19.-38.4 | 250 | 74 | 6400 | ||
| OFW275VSD | 20.0-41.0 | 275 | 74 | |||
| OFW315VSD | 46.0-50.9 | 315 | 74 | 6650 | ||
| OFW5VSD | OFW355VSD | 50.4-56.3 | 355 | 74 | 6950 | |
| OFW400VSD | 55.8-62.1 | 400 | 74 | 7060 | ||
| OFW450VSD | 63.8-76.5 | 450 | 74 | 8400 | ||
| OFW500VSD | 73.1-83.9 | 500 | 74 | 8400 | ||
| OFW630VSD | 89.0-102.9 | 630 | 74 | 9125 | ||
| OFW750VSD | 101.8-122.8 | 750 | 74 | 9225 | ||
| Company Profile |
ZheJiang Napu compressor Technology Co.,LTD was established in 2012 based in ZheJiang ,specializing in oil-free rotary screw air compressors, offering a wide range of products from airends to compressors .
With over 10 years experience in oil free screw air compressor. NAPU Compressor is compliant with ISO 8573-1, Class 0 standard and audited by TUV Rheinland and China National Quality Inspection Center of Compressor and Refrigerator.
The company is also compliant with ISO 9001:14001 and is CHINAMFG in the domestic market for its quality-driven culture. The oil-free compressors manufactured by the company are used in a variety of sectors including some of our valued clients like CASC-China Aerospace Science Corporation, NORINCO-China North Industries Group, CNNC-China National Nuclear Group, CHANG AN AUTO, SINOPHARM, BYD and CALT and Sino-Chemical etc.
Continuous improvement in productivity and efficiency is our goal, and we continue to offer an extensive services including our own branded oil-free compressor package as well as after-sales services for other leading brands.
| Product Features |
1. In house designed airend
2. 100% oil free air certified by Germany TUV.
3. Double-layer structure to reduce he noise.
4. Air Cooling and Water cooling are available.
5. VSD control are available.
6.Touch Screen PLC with preset running schedule, more intelligent control.
7.OEM&ODM service are accepted
| FAQ |
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of oil free air compressors. More than 20 years of experience in air compressor manufacturing.
Q2. What’s payment term ?
A: T/T, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q3. How about your after-sales service ?
A: 1.We can provide customers with installation and commissioning online instructions.
Q4. How about your warranty?
A: One year for the whole machine and 5 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, we can offer CE ,ISO and certificate as clients’ demande.
Q6. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Each compressor must pass at least 8 hours of continuous testing before leaving the factory.
Q7.How long could your air compressor be used?
A: Usually, more than over 10 years.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-12-29
China Hot selling Variable Frequency Energy Saving Dry Screw Oil Free Air Compressor manufacturer
Product Description
KDS Series Dry Screw Oil Free Compressor is used in all kinds of industries where air quality is important for the end products and production processes.These applications include food and beverage processing, pharmaceutical manufacturing and packaging, chemical and petrochemical processing, semiconductor and electronics manufacturing, the medical sector, automotive paint spraying, textile manufacturing and many more.
Only oil-free air compressors deliver 100% oil-free air, CHINAMFG develop oil-free air compressors especially for applications demanding the highest levels of purity. Zero risk of contamination means zero risk of damaged or unsafe products, or losses due to operational downtime.
Features:
World class oil-free compression element
1.Unique seal design guarantees 100 % oil-free air
2.Operation far below critical speed
3.High overall efficiency, thanks to:
– superior rotor coating
– element cooling jackets
4.No oil ‘clean up’ problems
SuperCoat – Energy savings and longer life Coating
Adekom’s exclusive SuperCoat rotor and housing coating process uses a mechanical and chemical CHINAMFG to insure the thinnest coating with the tightest possible grip. First, the rotor and housing surfaces are mechanically prepared to accept the coating. Then SuperCoat is precision-applied to insure the most even coat possible. Finally, all surfaces are heat-cured to solidify the mechanical/chemical bond. Compared to other coatings, SuperCoat delivers longer life and energy savings.
Energy Saving Electric Motor
Highly efficient, totally enclosed fan-cooled (T.E.F.C.), IP55, class F electric motor can achieve high efficiency of 95.2% that brings an unprecedented level of energy saving. High quality high-speed bearings from “SKF” are fitted for continuous trouble-free operation.
Advanced control and monitoring system
Advanced control and monitoring
1.Overall system performance status with pro-active service indications, alarms for malfunctions and safety shutdowns
2.Multi-language selectable display
3.All monitoring and control functions via 1 interface
4.Wide communication possibilities
5.Integration possible in many process control systems (field bus system)
High efficiency+high reliability water cooling
1.corrosion resistant stainless steel tubing
2.highly reliable robot welding; no risk for leaks
3.aluminium star insert increases heat transfer
4.cooling water outside tubes guided by baffles
no dead zones
limited fouling
no degradation in cooler performance
easy cleaning
very long service intervals
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-26