Product Description
Ingersoll Rand Oil Free Screw Air Compressor
Model: IRN200H-OF
CHINAMFG Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands-including Club Car , CHINAMFG Rand , CHINAMFG King and Trane -work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a $13 billion global business committed to a world of sustainable progress and enduring results.
CHINAMFG Rand, IR, the IR logo, PAC software, V-Shield and Ultra Coolant are trademarks of CHINAMFG Rand, its subsidiaries and/or affiliates. All other trademarks are the property of their respective owners. CHINAMFG Rand compressors are not designed, intended or approved for breathing air applications. CHINAMFG Rand does not approve specialised equipment for breathing air applications and assumes no responsibility or liability for compressors used for breathing air service. Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with CHINAMFG Rand’s standard terms and conditions of sale for such products, which are available CHINAMFG request. Product improvement is a continuing goal at CHINAMFG Rand. Any designs, diagrams, pictures, photographs and specifications contained within this document are for representative purposes only and may include optional scope and/or functionality and are subject to change without notice or obligation.
Our company’s purpose – to help make life better by relying on us – and the set of values that define us are the foundation of our company’s culture and success. We think and act like owners, taking responsibility for our own actions and always striving to care for our neighbors and create a brighter, healthier shared planet for everyone. We are committed to the success of our customers. Our goal is to operate with clarity and straightforwardness, building lifelong, ongoing and meaningful connections with our customers.
We are driven by a spirit of action and an entrepreneurial spirit of innovation and progress; we accept and embrace the many challenges that come with such responsibility. We speak honestly, admit mistakes, and always strive for openness and clarity. We have bold ambitions while moving CHINAMFG with humility and integrity, striving to earn trust every day. We have the expertise and experience to solve the toughest problems, but no matter how difficult the challenge, we are always sincere and humble. We are committed to fostering team innovation and cultivating and celebrating a culture that embraces diverse opinions, backgrounds and experiences. Employees who are driven by our purpose and values are an unstoppable force that strengthens our ability to deliver benefits to our stakeholders and ensure the long-term health and safety of our company. Bestrand is a leading supplier of compressed air system. Past 10 years, we established very good partnership with CHINAMFG Rand. We have provided all kinds of products from CHINAMFG Rand include air compressor, after treatment, spare parts to customers all over the world. Pls feel free to contact us for a quote.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling or Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-02-06
China high quality Manufacture Diesel Oil Cooling Well Drilling Industrial Stationary Mobile Screw Air Compressor air compressor for sale
Product Description
Product Description
Diesel Stationary Screw Air Compressor
Water well drilling rig / Deep well special diesel engine
This series of products are designed for 115-254mm diameter water well drilling rig and related compressor stations for water well and Geothermal Engineering;
On the premise of adhering to the excellent characteristics of the mobile air compressor,the series of products have been upgraded and optimized according to the characteristics of durable products and lower fuel construction;
The whole series of products adopt national III engine.
| TECHNICAL SPECIFICATIONS | |
| Type | Screw Air Compressor |
| Item | 29/23 |
| Rated FAD | 29 m³/min |
| Rate Pressure | 23 bar |
| Diesel Brand | Xichai Diesel |
| Engine Power | 258KW |
| Compression stage | 2 Stage |
| Whole Machine walking mode | Stationary |
| Dimensions (L*W*H) | 3100*1900*1950mm |
| Weight | 3800KG |
Detailed Photos
Packaging & Shipping
Company Profile
FAQ
Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.
Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China
Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.
Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Year |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Oil Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-05
China Custom Rotary Screw Free Oilless Piston High Pressure Silent Small Part Copper Portable Used Mini Single Industrial Movable Max Dental AC Oil Air Pump Compressor with Good quality
Product Description
Oilless Air Compressor Featuers:
1.Super Silent
Super low noise.The output air pressure is stable without fluctuations, reducing noise pollution.
2. Safety
If the voltage or current cause the machine overheat, it will automatically shut down to protect from burnout.
3. Automatic control
Pressure switch automatically controls the start and stop of the machine.
4. Adjustable air pressure
The air pressure can be adjusted to meet the needs of different equipment usage.
5. Save human power
Switch on the air compressor can work normally & automatically. It is easy to operate and does not need human to be on duty.
6. Easy maintenance
No need to add any lubricant, easy maintenance after purchase.
Parts Features
1.Heavy cast iron body: heavy load, long stroke, low fuel consumption, low noise
2.Cylinder: made of high-grade cast iron, strength, good lubricity, wall by the fine honing, wear-resistant, durable
3.Piston ring: good elasticity, excellent wear resistance, low oil consumption, not easy to make the valve group carbon deposition and loss of oil to burn the crankshaft and connecting rod.
4.The crankshaft, connecting rod, piston: well balanced, wear resistance, high strength, smooth running balance.
5.High reliable and durable valve; strong aluminum alloy body, light and heat.
6.The motor provides reliable power, low voltage start up and running performance strong fan cooled motor and body; special shock proof design.
7.Double nozzles, were used to direct the exhaust and pressure exhaust; pressure switch with push button, safe and convenient
8.Oil free,silent,protect-environment,suitable for dental use.
Frequency Asked Question
1.Are you the manufacturer or trading company?
We are the manufacturer.
2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
T/T,L/C at sight or cash.
5.What’s the lead time?
We are the manufacturer.
It is located in HangZhou City,ZHangZhoug Province,China.
FOB,CFR,CIF or EXW are all acceptable.
T/T,L/C at sight or cash.
In 15 days on receipt of deposit .
6.Do you accept sample order?
Yes,we accept.
7.What about the cost of sample?
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
Yes,we accept.
You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
| Installation Type: | Movable Type |
| Samples: |
US$ 60/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-02-03
China supplier 37K 50HP Oil Injected Screw Air Compressor Fix Speed 7 8 10 13 Barg manufacturer
Product Description
Crownwell Oil-Injected Rotary Screw Compressors
CWD 7-400 & CWD 7-400 PM
Power output: 7-400 kW / 10-500 hp
Delivery rate: 0.8-71.2 m3/min / 28-2514 cfm
Pressure range: 7-13 bar / 100-190 psig
CROWNWELL COMPRESSOR – HIGHEST STHangZhouRD
SIMPLICITY BUT NOT SIMPLE
For 3 generations, customers from mechanical engineering, industry and trade have relied on CHINAMFG know-how when it comes to plHangZhou, developing and manufacturing compressed air systems. They are fully aware of the fact that CHINAMFG AIR is more than just ordinary compressed air: utmost safety, outstanding efficiency, excellent quality, maximized flexibility along with dependable service are the ingredients to transform CHINAMFG AIR into air to work with – in China, in Asia and in more than 102 countries around the world.
The III generation, the basis for economical compressed air production
The Know-How
More than decades of know-how in manufacturing for the compressed air market. World wide knowledge in different compressed air applications have guided the development of customer specified stationary screw compressors.
Technical Advancement for your Benefit
The advantage of CHINAMFG lies in its simplified construction. Fewer components are utilized. This means a 60% reduction in main and wearing parts and over 70% fewer pipes and connections. In turn, this greatly reduces the risk of leakages, making the system environmentally friendly. Safe direct drive operation without V-belt transmission.
The CHINAMFG CHINAMFG works in the following way:
Ambient air is drawn through the intake filter and the multifunctional control system into the CHINAMFG block. This block consists of a pair of screw rotors. The main rotor, driven by an electric motor, takes the secondary rotor with it. The air is drawn in by the rotation of both of the interlocking rotors and is continually compressed. During rotation, coolant is injected into the rotors and forms a hydrostatic film between the main and secondary rotors. The function of the coolant is to seal the rotors, lubricate the bearings and adsorb the compression heat. Before compressed air leaves the compressor ( at 80 ºC approx.) it is separated from the coolant before being cooled in the aftercooler to approx.. 8ºC to 12ºC above the ambient temperature. The coolant then passes to the thermostatic control block and filter, before entering the cooler where it is cooled from approx.. 80ºC down to 50ºC. It is then injected back into the CHINAMFG block.
Features:
Direct drive via flexible coupling.
Fully encapsulated CHINAMFG CHINAMFG block.
Standard electric motor Protection Index IP23 and IP54.
User friendly service access.
Top quality, washable, oil resistant sound insulation.
Ready for operation, prewired and fully enclosed.
With operating mode selector switch Automatic-Off-Continuous.
Centrally mounted cooling fan provided for compressed air and lubricant coolers.
Compact and neat cabinet design.
Optional Equipment:
Sense of rotation
Multiple unit control with automatic base load selection
Full motor protection
Mains isolator switch for wall mounting
Beyond these features we offer a wide choice of compressed air accessories in reference to our compressor product range.
Energy Recovery Systems CROWNWELL-THERM
Compressed Air Filters
Compressed Air Dryers
Condensate Traps
Oil-Water Separators
Compressed Air Receivers
Crownwell OIL-INJECTED FIXED SPEED COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 880*700*920 | 240 |
| CWD11 | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 1080*750*1000 | 400 |
| CWD15 | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 1080*750*1000 | 420 |
| CWD18 | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1280*850*1160 | 550 |
| CWD22 | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1280*850*1160 | 580 |
| CWD30 | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1280*850*1160 | 600 |
| CWD37 | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1400*1000*1290 | 800 |
| CWD45 | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1400*1000*1290 | 850 |
| CWD55 | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1660 |
| CWD75 | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
Crownwell OIL-INJECTED PERMANENT MAGNET COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400 PM
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 PM | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 760*700*920 | 200 |
| CWD11 PM | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 980*750*1000 | 350 |
| CWD15 PM | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 980*750*1000 | 360 |
| CWD18 PM | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1120*850*1160 | 500 |
| CWD22 PM | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1120*850*1160 | 520 |
| CWD30 PM | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1120*850*1160 | 550 |
| CWD37 PM | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1280*1000*1290 | 750 |
| CWD45 PM | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1280*1000*1290 | 780 |
| CWD55 PM | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1600 |
| CWD75 PM | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 PM | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 PM | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 PM | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 PM | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 PM | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 PM | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 PM | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 PM | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 PM | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 PM | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
- PM-Permanent Magnet
Crownwell TWO-STAGE OIL-INJECTED COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400 PM
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD15-2S | 15 / 20 | 3.0 | 2.9 | 2.4 | 2.2 | 68 | 1480*850*1180 | 780 |
| CWD18-2S | 18.5 / 25 | 3.6 | 3.5 | 2.9 | 2.5 | 68 | 1480*850*1180 | 800 |
| CWD22-2S | 22 / 30 | 4.2 | 4.1 | 3.5 | 3.2 | 68 | 1480*850*1180 | 820 |
| CWD30-2S | 30 / 40 | 6.5 | 6.4 | 4.9 | 4.2 | 68 | 1720*1110*1480 | 1080 |
| CWD37-2S | 37 / 50 | 7.2 | 7.1 | 6.3 | 5.4 | 68 | 1720*1110*1480 | 1100 |
| CWD45-2S | 45 / 60 | 9.8 | 9.7 | 7.8 | 6.5 | 72 | 1720*1110*1480 | 1120 |
| CWD55-2S | 55 / 75 | 12.8 | 12.5 | 9.6 | 8.6 | 72 | 2100*1350*1720 | 2080 |
| CWD75-2S | 75 / 100 | 17.5 | 16.5 | 12.5 | 11.2 | 72 | 2100*1350*1720 | 2100 |
| CWD90-2S | 90 / 125 | 20.8 | 19.8 | 16.9 | 14.3 | 72 | 2460*1700*1900 | 3280 |
| CWD110-2S | 110 / 150 | 24.5 | 23.5 | 19.7 | 17.6 | 72 | 2460*1700*1900 | 3480 |
| CWD132-2S | 132 / 180 | 30.0 | 28.0 | 23.5 | 19.8 | 75 | 2900*1800*2571 | 3980 |
| CWD160-2S | 160 / 215 | 34.5 | 33.6 | 30.0 | 23.8 | 75 | 2900*1800*2571 | 4280 |
| CWD185-2S | 185 / 250 | 41.0 | 38.4 | 32.5 | 28.6 | 75 | 3800*1980*2150 | 5450 |
| CWD200-2S | 200 / 270 | 44.6 | 43.0 | 38.5 | 32.8 | 82 | 3800*1980*2150 | 5600 |
| CWD220-2S | 220 / 300 | 48.6 | 47.0 | 41.0 | 38.0 | 82 | 3800*1980*2150 | 6500 |
| CWD250-2S | 250 / 350 | 55.0 | 54.0 | 46.0 | 40.0 | 82 | 3800*1980*2150 | 6600 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
- 2S-Two Stage
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | AC Cooling and Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-01-22
China wholesaler Air Cooling 132kw Variable Speed Drive Mute Industrial AC Oil Free Dry Rotary Screw Air Compressor arb air compressor
Product Description
| Specification(VSD series) | ||||||
| Model | Capacity M3/min | Power kw | Noise level db | Weight KG | ||
| 3.5~10bar | Water Cooling | Air Cooling | ||||
| OFA1VSD | OFA15VSD | 1.1-3.3 | 15 | 74 | 930 | |
| OFA22VSD | 4.5-5.6 | 22 | 74 | 1150 | ||
| OFA30VSD | 4-6.6 | 30 | 74 | 1300 | ||
| OFW37VSD | 5-8.4 | 37 | 74 | 1600 | ||
| OFW45VSD | 6.1-11.1 | 45 | 74 | 1750 | ||
| OFA2VSD | OFA55VSD | 7.3-9.4 | 55 | 74 | 1900 | |
| OFA75VSD | 10.7-12.4 | 75 | 74 | 2630 | ||
| OFA90VSD | 12.7-15.4 | 90 | 74 | 2700 | ||
| OFA3VSD | OFA110VSD | 16.0-19.5 | 110 | 74 | ||
| OFA132VSD | 18.8-21.8 | 132 | 74 | 4300 | ||
| OFA160VSD | 24.0-29.6 | 160 | 74 | 4300 | ||
| OFA4VSD | OFA200VSD | 12.2-36.6 | 200 | 74 | ||
| OFA250VSD | 14.2-41.8 | 250 | 74 | 6950 | ||
| OFA275VSD | 15.8-47.4 | 275 | 74 | |||
| OFA315VSD | 45.0-52.1 | 315 | 74 | 6950 | ||
| OFA5VSD | OFA355VSD | 50.4-57.5 | 355 | 74 | ||
| OFW1VSD | OFW37VSD | 2-5.9 | 37 | 74 | ||
| OFW45VSD | 2.3-7 | 45 | 74 | |||
| OFW2VSD | OFW55VSD | 4.5-8.8 | 55 | 74 | ||
| OFW75VSD | 4.5-13.2 | 75 | 74 | 2170 | ||
| OFW90VSD | 4.5-15.5 | 90 | 74 | 2220 | ||
| OFW3VSD | OFW110VSD | 6.4-19.1 | 110 | 74 | ||
| OFW132VSD | 7.7-22.4 | 132 | 74 | 3500 | ||
| OFW160VSD | 14.5-42.9 | 160 | 74 | 3500 | ||
| OFW4VSD | OFW200VSD | 18-36.1 | 200 | 74 | ||
| OFW250VSD | 19.-38.4 | 250 | 74 | 6400 | ||
| OFW275VSD | 20.0-41.0 | 275 | 74 | |||
| OFW315VSD | 46.0-50.9 | 315 | 74 | 6650 | ||
| OFW5VSD | OFW355VSD | 50.4-56.3 | 355 | 74 | 6950 | |
| OFW400VSD | 55.8-62.1 | 400 | 74 | 7060 | ||
| OFW450VSD | 63.8-76.5 | 450 | 74 | 8400 | ||
| OFW500VSD | 73.1-83.9 | 500 | 74 | 8400 | ||
| OFW630VSD | 89.0-102.9 | 630 | 74 | 9125 | ||
| OFW750VSD | 101.8-122.8 | 750 | 74 | 9225 | ||
| Company Profile |
ZheJiang Napu compressor Technology Co.,LTD was established in 2012 based in ZheJiang ,specializing in oil-free rotary screw air compressors, offering a wide range of products from airends to compressors .
With over 10 years experience in oil free screw air compressor. NAPU Compressor is compliant with ISO 8573-1, Class 0 standard and audited by TUV Rheinland and China National Quality Inspection Center of Compressor and Refrigerator.
The company is also compliant with ISO 9001:14001 and is CHINAMFG in the domestic market for its quality-driven culture. The oil-free compressors manufactured by the company are used in a variety of sectors including some of our valued clients like CASC-China Aerospace Science Corporation, NORINCO-China North Industries Group, CNNC-China National Nuclear Group, CHANG AN AUTO, SINOPHARM, BYD and CALT and Sino-Chemical etc.
Continuous improvement in productivity and efficiency is our goal, and we continue to offer an extensive services including our own branded oil-free compressor package as well as after-sales services for other leading brands.
| Product Features |
1. In house designed airend
2. 100% oil free air certified by Germany TUV.
3. Double-layer structure to reduce he noise.
4. Air Cooling and Water cooling are available.
5. VSD control are available.
6.Touch Screen PLC with preset running schedule, more intelligent control.
7.OEM&ODM service are accepted
| FAQ |
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of oil free air compressors. More than 20 years of experience in air compressor manufacturing.
Q2. What’s payment term ?
A: T/T, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q3. How about your after-sales service ?
A: 1.We can provide customers with installation and commissioning online instructions.
Q4. How about your warranty?
A: One year for the whole machine and 5 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, we can offer CE ,ISO and certificate as clients’ demande.
Q6. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Each compressor must pass at least 8 hours of continuous testing before leaving the factory.
Q7.How long could your air compressor be used?
A: Usually, more than over 10 years.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-01-17
China Professional 10HP Oil Injected Rotary Industrial Compressors Amazon Portable 7-13 Bar Screw Air Compressor Oil mini air compressor
Product Description
ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC” .
Product Features
*Efficient permanent magnet synchronous motor using high-performance NdFeb permanent magnet, 120ºC without loss of magnetic. Through the magnetic field and magnetic force generated by the AC voltage related to the stator coil, the rotor generates rotation, low speed and high efficiency.
*Advanced level of integrated host design. High efficiency, low speed, low noise, low energy consumption, low maintenance cost, reliable stability and usability. Adopt the embedded integrated shaft directly connected structure, compact structure, high transmission efficiency.
*Large capacity oil and gas separator, coupled with sophisticated oil and gas separation elements and gas, liquid filtration elements, with 3 times oil and gas separation, to ensure the quality of compressed air.
*Intake valve plate adopts international advanced technology, coupled with reasonable noise reduction design, intake valve adjustment range 0-100% easy to adjust, small pressure loss, long life.
*High efficiency cooler adopts large heat exchange area design, improve cooling efficiency, effectively imitation machine high temperature, anti-corrosion treatment of the inner wall, the use of more severe mining, prolong the service life.
| TECHNICAL DATA—-OIL INJECTED SERIES |
|||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Pipe Diameter | Dimension LxWxH (mm) | |
| BO-7.5 | 7.5kw | 10hp | 7 | 1.2 | 66±2 | G 1/2″ | 800*700*930 |
| 8 | 1.1 | ||||||
| 10 | 0.95 | ||||||
| 12 | 1.8 | ||||||
| BO-11 | 11kw | 15hp | 7 | 1.65 | 68±2 | G 3/4″ | 950*750*1250 |
| 8 | 1.5 | ||||||
| 10 | 1.3 | ||||||
| 12 | 1.1 | ||||||
| BO-15 | 15kw | 20hp | 7 | 2.5 | |||
| 8 | 2.3 | ||||||
| 10 | 2.1 | ||||||
| 12 | 1.9 | ||||||
| BO-18.5D | 18.5kw | 25hp | 7 | 3.2 | G 1″ | 1380*850*1160 | |
| 8 | 3.0 | ||||||
| 10 | 2.7 | ||||||
| 12 | 2.4 | ||||||
| BO-22D | 22kw | 30hp | 7 | 3.8 | |||
| 8 | 3.6 | ||||||
| 10 | 3.2 | ||||||
| 12 | 2.7 | ||||||
| BO-30D | 30kw | 40hp | 7 | 5.3 | |||
| 8 | 5.0 | ||||||
| 10 | 4.5 | ||||||
| 12 | 4.0 | ||||||
| BO-37D | 37kw | 50hp | 7 | 6.8 | G 1-1/2″ | 1500*1000*1330 | |
| 8 | 6.2 | ||||||
| 10 | 5.6 | ||||||
| 12 | 5.0 | ||||||
| BO-45D | 45kw | 60hp | 7 | 7.4 | 72±2 | ||
| 8 | 7.0 | ||||||
| 10 | 6.2 | ||||||
| 12 | 5.6 | ||||||
| BO-55D | 55kw | 75hp | 7 | 10.0 | G 2″ | 1900*1250*1570 | |
| 8 | 9.6 | ||||||
| 10 | 8.5 | ||||||
| 12 | 7.6 | ||||||
| BO-75D | 75kw | 100hp | 7 | 13.4 | |||
| 8 | 12.6 | ||||||
| 10 | 11.2 | ||||||
| 12 | 10.0 | ||||||
| BO-90D | 90kw | 125hp | 7 | 16.2 | |||
| 8 | 15.0 | ||||||
| 10 | 13.8 | ||||||
| 12 | 12.3 | ||||||
| BO-110D | 110kw | 150hp | 7 | 21.0 | G 2-1/2″ | 2500*1470*1840 | |
| 8 | 19.8 | ||||||
| 10 | 17.4 | ||||||
| 12 | 14.8 | ||||||
| BO-132D | 132kw | 175hp | 7 | 24.5 | 75±2 | ||
| 8 | 23.2 | ||||||
| 10 | 20.5 | ||||||
| 12 | 17.4 | ||||||
| BO-160D | 160kw | 220hp | 7 | 28.7 | |||
| 8 | 27.6 | ||||||
| 10 | 24.6 | ||||||
| 12 | 21.5 | ||||||
| BO-185D | 185kw | 250hp | 7 | 32.0 | DN85 | 3150*1980*2150 | |
| 8 | 30.4 | ||||||
| 10 | 27.4 | ||||||
| 12 | 24.8 | ||||||
| BO-220D | 220kw | 300hp | 7 | 36.0 | 82±2 | ||
| 8 | 34.3 | ||||||
| 10 | 30.2 | ||||||
| 12 | 27.7 | ||||||
| BO-250D | 250kw | 350hp | 7 | 42.0 | |||
| 8 | 40.5 | ||||||
| 10 | 38.2 | ||||||
| 12 | 34.5 | ||||||
| BO-315D | 315kw | 430hp | 7 | 51.0 | |||
| 8 | 50.2 | ||||||
| 10 | 44.5 | ||||||
| 12 | 39.5 | ||||||
| BO-355D | 355kw | 480hp | 7 | 64.0 | 84±2 | DN100 | |
| 8 | 61 | ||||||
| 10 | 56.5 | ||||||
| 12 | 49.0 | ||||||
| BO-400D | 400kw | 545hp | 7 | 71.2 | |||
| 8 | 68.1 | ||||||
| 10 | 62.8 | ||||||
| 12 | 62.2 | ||||||
| TECHNICAL DATA |
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang , China.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-01-09
China Hot selling 200kw Water Cooling VSD Silent High Efficiency Rotary Screw Industrial Oil Free Dry Air Compressor small air compressor
Product Description
| Specification(VSD series) | ||||||
| Model | Capacity M3/min | Power kw | Noise level db | Weight KG | ||
| 3.5~10bar | Water Cooling | Air Cooling | ||||
| OFA1VSD | OFA15VSD | 1.1-3.3 | 15 | 74 | 930 | |
| OFA22VSD | 4.5-5.6 | 22 | 74 | 1150 | ||
| OFA30VSD | 4-6.6 | 30 | 74 | 1300 | ||
| OFW37VSD | 5-8.4 | 37 | 74 | 1600 | ||
| OFW45VSD | 6.1-11.1 | 45 | 74 | 1750 | ||
| OFA2VSD | OFA55VSD | 7.3-9.4 | 55 | 74 | 1900 | |
| OFA75VSD | 10.7-12.4 | 75 | 74 | 2630 | ||
| OFA90VSD | 12.7-15.4 | 90 | 74 | 2700 | ||
| OFA3VSD | OFA110VSD | 16.0-19.5 | 110 | 74 | ||
| OFA132VSD | 18.8-21.8 | 132 | 74 | 4300 | ||
| OFA160VSD | 24.0-29.6 | 160 | 74 | 4300 | ||
| OFA4VSD | OFA200VSD | 12.2-36.6 | 200 | 74 | ||
| OFA250VSD | 14.2-41.8 | 250 | 74 | 6950 | ||
| OFA275VSD | 15.8-47.4 | 275 | 74 | |||
| OFA315VSD | 45.0-52.1 | 315 | 74 | 6950 | ||
| OFA5VSD | OFA355VSD | 50.4-57.5 | 355 | 74 | ||
| OFW1VSD | OFW37VSD | 2-5.9 | 37 | 74 | ||
| OFW45VSD | 2.3-7 | 45 | 74 | |||
| OFW2VSD | OFW55VSD | 4.5-8.8 | 55 | 74 | ||
| OFW75VSD | 4.5-13.2 | 75 | 74 | 2170 | ||
| OFW90VSD | 4.5-15.5 | 90 | 74 | 2220 | ||
| OFW3VSD | OFW110VSD | 6.4-19.1 | 110 | 74 | ||
| OFW132VSD | 7.7-22.4 | 132 | 74 | 3500 | ||
| OFW160VSD | 14.5-42.9 | 160 | 74 | 3500 | ||
| OFW4VSD | OFW200VSD | 18-36.1 | 200 | 74 | ||
| OFW250VSD | 19.-38.4 | 250 | 74 | 6400 | ||
| OFW275VSD | 20.0-41.0 | 275 | 74 | |||
| OFW315VSD | 46.0-50.9 | 315 | 74 | 6650 | ||
| OFW5VSD | OFW355VSD | 50.4-56.3 | 355 | 74 | 6950 | |
| OFW400VSD | 55.8-62.1 | 400 | 74 | 7060 | ||
| OFW450VSD | 63.8-76.5 | 450 | 74 | 8400 | ||
| OFW500VSD | 73.1-83.9 | 500 | 74 | 8400 | ||
| OFW630VSD | 89.0-102.9 | 630 | 74 | 9125 | ||
| OFW750VSD | 101.8-122.8 | 750 | 74 | 9225 | ||
| Company Profile |
ZheJiang Napu compressor Technology Co.,LTD was established in 2012 based in ZheJiang ,specializing in oil-free rotary screw air compressors, offering a wide range of products from airends to compressors .
With over 10 years experience in oil free screw air compressor. NAPU Compressor is compliant with ISO 8573-1, Class 0 standard and audited by TUV Rheinland and China National Quality Inspection Center of Compressor and Refrigerator.
The company is also compliant with ISO 9001:14001 and is CHINAMFG in the domestic market for its quality-driven culture. The oil-free compressors manufactured by the company are used in a variety of sectors including some of our valued clients like CASC-China Aerospace Science Corporation, NORINCO-China North Industries Group, CNNC-China National Nuclear Group, CHANG AN AUTO, SINOPHARM, BYD and CALT and Sino-Chemical etc.
Continuous improvement in productivity and efficiency is our goal, and we continue to offer an extensive services including our own branded oil-free compressor package as well as after-sales services for other leading brands.
| Product Features |
1. In house designed airend
2. 100% oil free air certified by Germany TUV.
3. Double-layer structure to reduce he noise.
4. Air Cooling and Water cooling are available.
5. VSD control are available.
6.Touch Screen PLC with preset running schedule, more intelligent control.
7.OEM&ODM service are accepted
| FAQ |
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of oil free air compressors. More than 20 years of experience in air compressor manufacturing.
Q2. What’s payment term ?
A: T/T, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q3. How about your after-sales service ?
A: 1.We can provide customers with installation and commissioning online instructions.
Q4. How about your warranty?
A: One year for the whole machine and 5 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, we can offer CE ,ISO and certificate as clients’ demande.
Q6. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Each compressor must pass at least 8 hours of continuous testing before leaving the factory.
Q7.How long could your air compressor be used?
A: Usually, more than over 10 years.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-12-29
China high quality 45kw 60HP CHINAMFG Oil Injected Screw Air Compressor Fix Speed 7 8 10 13 Barg with Good quality
Product Description
Crownwell Oil-Injected Rotary Screw Compressors
CWD 7-400 & CWD 7-400 PM
Power output: 7-400 kW / 10-500 hp
Delivery rate: 0.8-71.2 m3/min / 28-2514 cfm
Pressure range: 7-13 bar / 100-190 psig
CROWNWELL COMPRESSOR – HIGHEST STHangZhouRD
SIMPLICITY BUT NOT SIMPLE
For 3 generations, customers from mechanical engineering, industry and trade have relied on CHINAMFG know-how when it comes to plHangZhou, developing and manufacturing compressed air systems. They are fully aware of the fact that CHINAMFG AIR is more than just ordinary compressed air: utmost safety, outstanding efficiency, excellent quality, maximized flexibility along with dependable service are the ingredients to transform CHINAMFG AIR into air to work with – in China, in Asia and in more than 102 countries around the world.
The III generation, the basis for economical compressed air production
The Know-How
More than decades of know-how in manufacturing for the compressed air market. World wide knowledge in different compressed air applications have guided the development of customer specified stationary screw compressors.
Technical Advancement for your Benefit
The advantage of CHINAMFG lies in its simplified construction. Fewer components are utilized. This means a 60% reduction in main and wearing parts and over 70% fewer pipes and connections. In turn, this greatly reduces the risk of leakages, making the system environmentally friendly. Safe direct drive operation without V-belt transmission.
The CHINAMFG CHINAMFG works in the following way:
Ambient air is drawn through the intake filter and the multifunctional control system into the CHINAMFG block. This block consists of a pair of screw rotors. The main rotor, driven by an electric motor, takes the secondary rotor with it. The air is drawn in by the rotation of both of the interlocking rotors and is continually compressed. During rotation, coolant is injected into the rotors and forms a hydrostatic film between the main and secondary rotors. The function of the coolant is to seal the rotors, lubricate the bearings and adsorb the compression heat. Before compressed air leaves the compressor ( at 80 ºC approx.) it is separated from the coolant before being cooled in the aftercooler to approx.. 8ºC to 12ºC above the ambient temperature. The coolant then passes to the thermostatic control block and filter, before entering the cooler where it is cooled from approx.. 80ºC down to 50ºC. It is then injected back into the CHINAMFG block.
Features:
Direct drive via flexible coupling.
Fully encapsulated CHINAMFG CHINAMFG block.
Standard electric motor Protection Index IP23 and IP54.
User friendly service access.
Top quality, washable, oil resistant sound insulation.
Ready for operation, prewired and fully enclosed.
With operating mode selector switch Automatic-Off-Continuous.
Centrally mounted cooling fan provided for compressed air and lubricant coolers.
Compact and neat cabinet design.
Optional Equipment:
Sense of rotation
Multiple unit control with automatic base load selection
Full motor protection
Mains isolator switch for wall mounting
Beyond these features we offer a wide choice of compressed air accessories in reference to our compressor product range.
Energy Recovery Systems CROWNWELL-THERM
Compressed Air Filters
Compressed Air Dryers
Condensate Traps
Oil-Water Separators
Compressed Air Receivers
Crownwell OIL-INJECTED FIXED SPEED COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 880*700*920 | 240 |
| CWD11 | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 1080*750*1000 | 400 |
| CWD15 | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 1080*750*1000 | 420 |
| CWD18 | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1280*850*1160 | 550 |
| CWD22 | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1280*850*1160 | 580 |
| CWD30 | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1280*850*1160 | 600 |
| CWD37 | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1400*1000*1290 | 800 |
| CWD45 | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1400*1000*1290 | 850 |
| CWD55 | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1660 |
| CWD75 | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
Crownwell OIL-INJECTED PERMANENT MAGNET COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400 PM
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD7 PM | 7.5 / 10 | 1.3 | 1.2 | 1.0 | 0.8 | 66 | 760*700*920 | 200 |
| CWD11 PM | 11 / 15 | 1.7 | 1.6 | 1.4 | 1.2 | 68 | 980*750*1000 | 350 |
| CWD15 PM | 15 / 20 | 2.5 | 2.3 | 2.1 | 1.9 | 68 | 980*750*1000 | 360 |
| CWD18 PM | 18.5 / 25 | 3.2 | 3.0 | 2.7 | 2.4 | 68 | 1120*850*1160 | 500 |
| CWD22 PM | 22 / 30 | 3.8 | 3.6 | 3.2 | 2.8 | 68 | 1120*850*1160 | 520 |
| CWD30 PM | 30 / 40 | 5.3 | 5.0 | 4.5 | 4.0 | 68 | 1120*850*1160 | 550 |
| CWD37 PM | 37 / 50 | 6.8 | 6.2 | 5.6 | 5.0 | 68 | 1280*1000*1290 | 750 |
| CWD45 PM | 45 / 60 | 8.0 | 7.3 | 7.0 | 5.9 | 72 | 1280*1000*1290 | 780 |
| CWD55 PM | 55 / 75 | 10.1 | 9.5 | 8.7 | 7.8 | 72 | 1800*1230*1570 | 1600 |
| CWD75 PM | 75 / 100 | 13.6 | 12.8 | 12.3 | 10.2 | 72 | 1800*1230*1570 | 1800 |
| CWD90 PM | 90 / 125 | 16.2 | 15.5 | 14.0 | 12.5 | 72 | 1800*1230*1570 | 1900 |
| CWD110 PM | 110 / 150 | 21.2 | 19.8 | 17.8 | 15.5 | 72 | 2400*1470*1840 | 2500 |
| CWD132 PM | 132 / 180 | 24.5 | 23.2 | 20.5 | 17.8 | 75 | 2400*1470*1840 | 2700 |
| CWD160 PM | 160 / 215 | 28.8 | 27.8 | 25.0 | 22.4 | 75 | 2400*1470*1840 | 3000 |
| CWD185 PM | 185 / 250 | 32.5 | 31.2 | 28.0 | 25.8 | 75 | 3150*1980*2150 | 3500 |
| CWD200 PM | 200 / 270 | 36.0 | 34.3 | 30.5 | 28.0 | 82 | 3150*1980*2150 | 4000 |
| CWD250 PM | 250 / 350 | 43.0 | 41.5 | 38.2 | 34.9 | 82 | 3150*1980*2150 | 4500 |
| CWD315 PM | 315 / 400 | 51.0 | 50.2 | 44.5 | 39.5 | 82 | 3150*1980*2150 | 6000 |
| CWD355 PM | 355 / 450 | 64.0 | 61.0 | 56.5 | 49.0 | 84 | 3150*1980*2150 | 6500 |
| CWD400 PM | 400 / 500 | 71.2 | 68.1 | 62.8 | 52.2 | 84 | 3150*1980*2150 | 7200 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
- PM-Permanent Magnet
Crownwell TWO-STAGE OIL-INJECTED COMPRESSOR
TECHNICAL SPECIFICATIONS CWD 7-400 PM
(7.5-400kW / 10-500hp)
| Model | Motor Power kW / hp |
Free Air Delivery m3/min |
Noise Level dB(A) |
Dimension L * W * H mm |
Weight Kg |
|||
| 7barg | 8barg | 10barg | 13barg | |||||
| CWD15-2S | 15 / 20 | 3.0 | 2.9 | 2.4 | 2.2 | 68 | 1480*850*1180 | 780 |
| CWD18-2S | 18.5 / 25 | 3.6 | 3.5 | 2.9 | 2.5 | 68 | 1480*850*1180 | 800 |
| CWD22-2S | 22 / 30 | 4.2 | 4.1 | 3.5 | 3.2 | 68 | 1480*850*1180 | 820 |
| CWD30-2S | 30 / 40 | 6.5 | 6.4 | 4.9 | 4.2 | 68 | 1720*1110*1480 | 1080 |
| CWD37-2S | 37 / 50 | 7.2 | 7.1 | 6.3 | 5.4 | 68 | 1720*1110*1480 | 1100 |
| CWD45-2S | 45 / 60 | 9.8 | 9.7 | 7.8 | 6.5 | 72 | 1720*1110*1480 | 1120 |
| CWD55-2S | 55 / 75 | 12.8 | 12.5 | 9.6 | 8.6 | 72 | 2100*1350*1720 | 2080 |
| CWD75-2S | 75 / 100 | 17.5 | 16.5 | 12.5 | 11.2 | 72 | 2100*1350*1720 | 2100 |
| CWD90-2S | 90 / 125 | 20.8 | 19.8 | 16.9 | 14.3 | 72 | 2460*1700*1900 | 3280 |
| CWD110-2S | 110 / 150 | 24.5 | 23.5 | 19.7 | 17.6 | 72 | 2460*1700*1900 | 3480 |
| CWD132-2S | 132 / 180 | 30.0 | 28.0 | 23.5 | 19.8 | 75 | 2900*1800*2571 | 3980 |
| CWD160-2S | 160 / 215 | 34.5 | 33.6 | 30.0 | 23.8 | 75 | 2900*1800*2571 | 4280 |
| CWD185-2S | 185 / 250 | 41.0 | 38.4 | 32.5 | 28.6 | 75 | 3800*1980*2150 | 5450 |
| CWD200-2S | 200 / 270 | 44.6 | 43.0 | 38.5 | 32.8 | 82 | 3800*1980*2150 | 5600 |
| CWD220-2S | 220 / 300 | 48.6 | 47.0 | 41.0 | 38.0 | 82 | 3800*1980*2150 | 6500 |
| CWD250-2S | 250 / 350 | 55.0 | 54.0 | 46.0 | 40.0 | 82 | 3800*1980*2150 | 6600 |
- Unit performance measured according to ISO 1217, Annex C, Edition 4 (2009)
Reference conditions:
-Relative humidity 0%
-Absolute inlet pressure: 1 bar (a) (14.5 psi)
-Intake air temperature: 20°C, 68°F
- Noise level measured according to ISO 2151:2004, operation at max. operating pressure and max. speed; tolerance: ±3 dB(A)
- 2S-Two Stage
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | AC Cooling and Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-12-26
China Hot selling 2023 90kw 120HP 7bar 8bar 10bar Oil Injected Rotary Screw Air Compressor with Direct Drive Applications with high quality
Product Description
ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC” .
Product Features
*Efficient permanent magnet synchronous motor using high-performance NdFeb permanent magnet, 120ºC without loss of magnetic. Through the magnetic field and magnetic force generated by the AC voltage related to the stator coil, the rotor generates rotation, low speed and high efficiency.
*Advanced level of integrated host design. High efficiency, low speed, low noise, low energy consumption, low maintenance cost, reliable stability and usability. Adopt the embedded integrated shaft directly connected structure, compact structure, high transmission efficiency.
*Large capacity oil and gas separator, coupled with sophisticated oil and gas separation elements and gas, liquid filtration elements, with 3 times oil and gas separation, to ensure the quality of compressed air.
*Intake valve plate adopts international advanced technology, coupled with reasonable noise reduction design, intake valve adjustment range 0-100% easy to adjust, small pressure loss, long life.
*High efficiency cooler adopts large heat exchange area design, improve cooling efficiency, effectively imitation machine high temperature, anti-corrosion treatment of the inner wall, the use of more severe mining, prolong the service life.
| TECHNICAL DATA—-OIL INJECTED SERIES |
|||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Pipe Diameter | Dimension LxWxH (mm) | |
| BO-7.5 | 7.5kw | 10hp | 7 | 1.2 | 66±2 | G 1/2″ | 800*700*930 |
| 8 | 1.1 | ||||||
| 10 | 0.95 | ||||||
| 12 | 1.8 | ||||||
| BO-11 | 11kw | 15hp | 7 | 1.65 | 68±2 | G 3/4″ | 950*750*1250 |
| 8 | 1.5 | ||||||
| 10 | 1.3 | ||||||
| 12 | 1.1 | ||||||
| BO-15 | 15kw | 20hp | 7 | 2.5 | |||
| 8 | 2.3 | ||||||
| 10 | 2.1 | ||||||
| 12 | 1.9 | ||||||
| BO-18.5D | 18.5kw | 25hp | 7 | 3.2 | G 1″ | 1380*850*1160 | |
| 8 | 3.0 | ||||||
| 10 | 2.7 | ||||||
| 12 | 2.4 | ||||||
| BO-22D | 22kw | 30hp | 7 | 3.8 | |||
| 8 | 3.6 | ||||||
| 10 | 3.2 | ||||||
| 12 | 2.7 | ||||||
| BO-30D | 30kw | 40hp | 7 | 5.3 | |||
| 8 | 5.0 | ||||||
| 10 | 4.5 | ||||||
| 12 | 4.0 | ||||||
| BO-37D | 37kw | 50hp | 7 | 6.8 | G 1-1/2″ | 1500*1000*1330 | |
| 8 | 6.2 | ||||||
| 10 | 5.6 | ||||||
| 12 | 5.0 | ||||||
| BO-45D | 45kw | 60hp | 7 | 7.4 | 72±2 | ||
| 8 | 7.0 | ||||||
| 10 | 6.2 | ||||||
| 12 | 5.6 | ||||||
| BO-55D | 55kw | 75hp | 7 | 10.0 | G 2″ | 1900*1250*1570 | |
| 8 | 9.6 | ||||||
| 10 | 8.5 | ||||||
| 12 | 7.6 | ||||||
| BO-75D | 75kw | 100hp | 7 | 13.4 | |||
| 8 | 12.6 | ||||||
| 10 | 11.2 | ||||||
| 12 | 10.0 | ||||||
| BO-90D | 90kw | 125hp | 7 | 16.2 | |||
| 8 | 15.0 | ||||||
| 10 | 13.8 | ||||||
| 12 | 12.3 | ||||||
| BO-110D | 110kw | 150hp | 7 | 21.0 | G 2-1/2″ | 2500*1470*1840 | |
| 8 | 19.8 | ||||||
| 10 | 17.4 | ||||||
| 12 | 14.8 | ||||||
| BO-132D | 132kw | 175hp | 7 | 24.5 | 75±2 | ||
| 8 | 23.2 | ||||||
| 10 | 20.5 | ||||||
| 12 | 17.4 | ||||||
| BO-160D | 160kw | 220hp | 7 | 28.7 | |||
| 8 | 27.6 | ||||||
| 10 | 24.6 | ||||||
| 12 | 21.5 | ||||||
| BO-185D | 185kw | 250hp | 7 | 32.0 | DN85 | 3150*1980*2150 | |
| 8 | 30.4 | ||||||
| 10 | 27.4 | ||||||
| 12 | 24.8 | ||||||
| BO-220D | 220kw | 300hp | 7 | 36.0 | 82±2 | ||
| 8 | 34.3 | ||||||
| 10 | 30.2 | ||||||
| 12 | 27.7 | ||||||
| BO-250D | 250kw | 350hp | 7 | 42.0 | |||
| 8 | 40.5 | ||||||
| 10 | 38.2 | ||||||
| 12 | 34.5 | ||||||
| BO-315D | 315kw | 430hp | 7 | 51.0 | |||
| 8 | 50.2 | ||||||
| 10 | 44.5 | ||||||
| 12 | 39.5 | ||||||
| BO-355D | 355kw | 480hp | 7 | 64.0 | 84±2 | DN100 | |
| 8 | 61 | ||||||
| 10 | 56.5 | ||||||
| 12 | 49.0 | ||||||
| BO-400D | 400kw | 545hp | 7 | 71.2 | |||
| 8 | 68.1 | ||||||
| 10 | 62.8 | ||||||
| 12 | 62.2 | ||||||
| TECHNICAL DATA |
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang , China.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-12-14
China wholesaler Direct Driven Permanent Magnet Rotary Screw Air Compressors air compressor oil
Product Description
COMPANY PROFILE
KY-200KYG Air Compressor (can be customized) :
GENERAL FEATURES:
Permanent magnet inverter compressor because of its energy saving and high efficiency has become a hot and bright spot of the industry, the original air compressor energy consumption on the market, is gradually being the permanent magnet inverter compressor to replace or replacement, users can directly bring cost saveing of 20%-40%.
With the development of science and technology, air compressor is widely used in many industries such as machinery, metallurgy, building materials, electric power, chemical industry, food, textile and so on. However, the air compressor belongs to the high energy consumption equipment, power consumption in some industries accounted for more than 30% og the power consumption of production, it is commonly known as “electric tiger”.
SPECIAL FEATURES:
1,AIR PRESSURE STABILLTY
Due to the use of screw air compressor variable frequency stepless speed regulation characteristics of inverter, inverter controller or regulator through internal PID, can smoothly start; on consumption volatility is relatively large occasions, and can quicklyh adjust the response. Compared with the upper and lower limit switch control of the power frequency operation, the air pressure stability increases exponentially.
2,START NO IMPACT
Because the transducer itself contained the function of soft starter, starting current within the maximum rated current of 1.2 times, compared with the start frequency in general more than 6 times the rated current, start a little impact.
This impact is not only on the grid, the impact of the entire mechanical system, but also greatly reduced.
3,VARIABLE FLOW CONTROL
Power driven air compressor can only work in an exhaust, inverter air compressor can work in a wide range of exhaust. Frequency converter is based on the actual use of gas in real time to adjust the motor speed to control the amount of exhaust.
When the air volume is low, the air compressor can be automatically dormant. thereby greatly redcing the energy loss. The optimized control strategy can further improve the energy saving effect.
4,AC POWER SUPPLY VOLTAGE BETTER
Because of the over modulation technology of the inverter, the output voltage of the motor can be output when the voltage of the AC power supply is low, and the voltage of the output to the motor is too high.
For the generation of power, frequeucy conversion drive can show its advantages.
5,AC POWER SUPPLY VOLTAGE BETTER
Most of the working condition of the frequency conersion system is lower than the rated speed of the work, the host machine noise and wear down, prolongmain- tenance and service life.
If the fan is also driven by frequency conversion, can significantly reduce the nosie of air compressor work.
TECHNICAL PARAMETERS:
| Model | Power | Pressure (Mpa) |
Air flow | Noise | Stage | Exit pipe diameter |
Weight (KG) |
Dimensions (mm(LxWxH) |
| PE-10AVF | 7.5 | 8 | 1.0 | 60±2 |
Single grade |
3/4 |
280 | 1000*600*100 |
| 10 | 0.8 | |||||||
| PE-20AVF | 8 | 2.2 | 60±2 |
Single grade |
1 | 480 | 1150*800*1280 | |
| 10 | 1.8 | |||||||
| PE-30AVF | 22 | 8 | 3.8 | 62±2 |
Single grade |
11/4 |
520 | 1150*800*1280 |
| 10 | 3.0 | |||||||
| PE-40AVF | 30 | 8 | 5.0 |
63±2 | Single grade |
11/4 |
550 | 1150*800*1280 |
| 10 | 4.4 | |||||||
| PE-50AVF | 37 | 8 | 6.8 |
63±2 | Single grade |
11/2 |
650 | 1300*1000*1450 |
| 10 | 5.4 | |||||||
| PE-60AVF | 45 | 8 | 8.0 |
65±2 | Single grade |
11/2 |
750 | 1300*1000*1450 |
| 10 | 6.8 | |||||||
| PE-75AVF | 8 | 9.7 | 65±2 | Single grade |
2 | 1200 | 1700*1270*1500 | |
| 10 | 8.6 | |||||||
| PE-100AVF | 75 | 8 | 13.2 | 65±2 | Single grade |
2 | 1350 | 1700*1270*1500 |
| 10 | 16.1 |
ENERGY-SAVING EFFECT OF TWO-STAGE COMPRESSION:
According to the engineering thermodynamics theory, it is the most economical for the compressor with isothermal compres-
sion.Two-stage oil-injection screw air compressor is designed based on the above theory, it fully improves the cooling function through oil injection during the two-stage compression, plus the inter-stage cooling, by ensuring the temperature is above the pressure dew point, it can be close to isothermal compression as possible, so as to achieve the energy-saving effect.
At the same time, due to low compression ratio of the two-stage airend, the “internal leakage”is largely reduced in the compression process compared with the single-stage compression airend with the same power and same discharge pressure.On the contrary, the diplacement is increased, which means that the efficiency is increased, and the specific power is reduced.
Compared with the ordinary two-stage permanent magnetic compressor on the market,Moair uses the two-drive and two-stage compres- sion, which directly avoids the power loss inside the gear set.
Energy-saving advantages:
1,To reduce the bearing load, and improve the volumetric efficincy;
2,In the case of partial load operation, it can improve efficiency and become energy saving to a better extent.
3,The energy saving of two-stage screw air compressor is up to 15%-25% than that of the one-stage air compressor, which can save the considerable electricity fees every year.
About shipping
Why choose us?
FAQ:
1.Q:What do you need machine and quotation?
A: According to capacity and factory size ,we can give you details.
2.Q: Are you trading company or manufacturer ?
A:We are factory.
3.Q:How do we pack machine?
A:Exporting wooden cases
4.Q:Lead time
A:Around 25-30 days after the receipt of your deposit.
| Type: | High Pressure Gun |
|---|---|
| Usage: | Paint Spray Gun, Washing Gun, Hopper Gun, Garden Gun |
| Working Style: | Rotary Type |
| Air Wrench Type: | Pulse pneumatic wrench |
| Pneumatic Drill Range: | Tunnel |
| Degree of Automation: | Automatic |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-12-08