Product Description
China Best Quality 30hp 22Kw High Pressure Workshop Industria CHINAMFG Screw Air Compressor With IE4 PM VSD Motor
Promises Every Machine Will Run Well More Than 15 Years
Product Description
Saving energy is making money
CHINAMFG rotary screw air compressor used germany technology screw(air end ) ,
The same intake valve designed by CHINAMFG Rand,
high Efficient IP54 rated motor,
And quoted the high-efficiency inverter fromDenmark.
The air compressor can maintain a stable motor efficiency at any speed,so it is more energy-saving and power-saving.
Basic introduction of air compressor
| Model : | vsd15hp 11kw rotary screw air compressor for fiber laser cutting |
| Type: | Energy Saving Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 7~12.5 bar |
| Installed Motor Power: | 11kw /15HP |
| / 10HPCapacity: | 1.5-0.8m3/min |
| Color: | Blue or gery |
| Driven Method: | Direct drive |
| Air End: | Original Ally-win Air End from Germany |
| Trademark: | Hengchaowin |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Casting , Metal , Plastic , Rubber |
Detailed Photos
Brief Introduction:
Air end: Germany Technology. 30 years designed lifetime.
Motor: Top quality ,IP54 or IP55
Inverter: Danish brand inverter can save 30% energy.
Warranty: 5 years for the air end, and 2 years for the whole compressor.
Delivery time: 7-15 days.
After-sales service:we have our professional after-sales technician to instruct the installation of the whole screw air compressor.
Certificate: CE/ISO9001/ASME
We offer free pipe and valves for installation and installation diagram
1.permanent magnet motor.
Exceed IE3 standards
IP54 or IP55 protecting grad
Variable speed drive
2.Germany technology air end
R&D in Germany GU or CHINAMFG brand air end
designed for 10 years +of reliable operation
3.Inlet valve
same desige as CHINAMFG Rand
No blow-off losses/large suction are
Full aluminum design,maintenance-free
4.oil gas tank & built in separation system.
Oversized air end oil tank with sight glass
The high efficiency oil seperator ensures that the oil carry over in less than 3ppm.
System pressure loss,less than 0.02mpa.
5.Polt touch controller
HD color touch LCD screen
Operation record/chart display
Weekly timer/service history and plHangZhou
Real-time operation/maintenance/alarm information
6.Innovative vectorial inverter
CE,UL,CUL,ROSH certification
Independent cooling air duct design
Robust enclosure for trouble-free operation in the harshest conditions.
Product Parameters
| Model Modelo |
HW-7T | HW-11T | HW-15T | HW-22T | HWV-30A | HWV-37A | ||||||||||||||||||
| air flow flujo de aire |
Lliter/min | 1 | 0.9 | 0.8 | 1.5 | 1.3 | 1.1 | 0.8 | 2.4 | 2.1 | 1.5 | 1 | 3.5 | 3.1 | 2.7 | 1.7 | 4.3 | 3.6 | 2.4 | 2.9 | 5.8 | 5.2 | 2.8 | 3.2 |
| 35 | 31 | 28 | 52 | 46 | 39 | 28 | 74 | 74 | 52 | 35 | 124 | 109 | 95 | 35 | 151 | 127 | 74 | 102 | 205 | 183 | 98 | 112 | ||
| working pressure presión laboral |
bar(kg) | 8 | 10 | 12.5 | 8 | 10 | 12.5 | 15 | 8 | 10 | 12.5 | 15 | 8 | 10 | 12.5 | 15 | 10 | 12.5 | 15 | 20 | 10 | 12.5 | 15 | 20 |
| psi | 116 | 145 | 174 | 116 | 145 | 174 | 217 | 116 | 145 | 174 | 217 | 116 | 145 | 174 | 217 | 145 | 174 | 217 | 290 | 145 | 174 | 217 | 290 | |
| power poder |
KW / HP | 7.5kw/ 10hp |
11kw/ 15hp |
15kw/ 20hp |
22kw/ 30hp |
30kw/ 40hp |
37kw/ 50hp |
|||||||||||||||||
| noise | db(A) | 62±2 | 66±2 | 66±2 | 68±2 | 68±2 | 72±2 | |||||||||||||||||
| Caliber | inch | RP 1/2 | RP 1/2 | RP 1/2 | RP 1/2 | RP 1 | RP1 1/2 | |||||||||||||||||
| Voltage/Frequency | AC 380v/415v/220v/480v or 50hz/60hz accpet Customized voltage | |||||||||||||||||||||||
| Starting mode Modo de inicio |
variable frequency start inicio de frecuencia variable |
|||||||||||||||||||||||
| air dryer secador |
m³/min | 1.5 | 1.5 | 2.5 | 3.8 | / | / | |||||||||||||||||
| line filter filtro de línea |
m³/min | 1.5 | 1.5 | 2.5 | 3.8 | / | / | |||||||||||||||||
| air tank tanque de aire |
liter | 300 | 400 | 400 | 600 | / | / | |||||||||||||||||
| Shape dimension (mm) |
L | 1700 | 1180 | 1180 | 1600 | 1300 | 1450 | |||||||||||||||||
| W | 800 | 800 | 800 | 110 | 910 | 910 | ||||||||||||||||||
| H | 1689 | 1210 | 1210 | 1290 | 1290 | 1290 | ||||||||||||||||||
| Weight | KG | 500 | 600 | 650 | 700 | 520 | 720 | |||||||||||||||||
Company Profile
Why Choose Us
HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.
After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.
Brief introduction of factory:
1. We have been engaged in R D department, production and sales of air compressors for 30 years;
2. Our air compressor products through CE,SGS,ISO certification, with more than 20 invention patents;
3. Our products are exported to 132 countries and regions around the world;
4. Our air compressor provides a 5-year warranty.
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available
Customer feedback
Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality.
Packaging & Shipping
The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
FAQ
Q1: How long could your air compressor be used?
O: Generally, more than 10 years
Q2: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information
Q3: How about your customer service?
O: 24 hours on-line service available
Q4: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available /* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by lmc 2025-02-24
China manufacturer Reasonable Designed Twin Screw Air Compressor for Water Conservancy with Great quality
Product Description
Product Description
Application
Diesel mobile screw air compressors are widely used in highway, railway, mining, water conservancy, shipbuilding, urban construction, energy, military and other industries.
Features
* Main engine: large-diameter rotor design, the main engine and the diesel engine are directly connected through a highly elastic coupling, and there is no speed-increasing gear in the middle between them engine. The main engine rotates at the same speed as the diesel engine, with higher efficiency, better reliability and longer life.
* Diesel engine: Cummins, CHINAMFG and other famous domestic and foreign diesel engines are selected, which meet the national II emission requirements. With strong power, low fuel consumption, and nationwide after-sales service system, users can get rapid and comprehensive services.
* The air volume control system is simple and reliable. According to the size of the air volume, the air intake volume is automatically adjusted from 0 to 100%, and the diesel throttle is automatically adjusted at the same time, which greatly saves diesel oil.
* The microcomputer intelligently monitors air compressor exhaust pressure, exhaust temperature, diesel engine speed, oil pressure, water temperature, fuel tank level and other operating parameters.
* Multi-stage air filter, suitable for dusty working environment. Multi-stage fuel filter, suitable for the current status of domestic oil quality. Oversized oil-water cooler, suitable for high temperature and plateau environments.
* Spacious maintenance and repair door, all parts needed to be maintained are within easy reach. The maintenance of air filters, oil filters, fuel tanks, batteries and oil coolers is easy and convenient, reducing downtime.
* Easy to move, it can still move flexibly under the harsh terrain conditions. Each compressor is equipped with lifting rings for safe and convenient lifting and transportation.
Product Parameters
|
Model |
HF32/10(K) |
HF32/10(K) |
|
Air displacement |
32m3/min |
32m3/min |
|
Air pressure |
10bar |
10bar |
|
Engine model |
Yuchai YC6M395L-K20 |
Cummins 6LTAA8.9-C360 |
|
Power |
288kw/395HP |
265kw/360HP |
|
Dimension |
4250×2000×2400mm |
4250×2000×2400mm |
|
Weight |
5200kg |
5200kg |
Working Site
Company Profile
FAQ
1.Are you trading company or manufacturer?
We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.
2. Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.
3.How about your machine quality?
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.
4. Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.
5. What about the qaulity warranty?
We offer one-year quality warranty for machines’ main body.
6. How long can you deliver the machine?
Generally, we can deliver the machine in 7 days.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support, Field Maintenance |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 35000/Set
1 Set(Min.Order) | |
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2024-02-24
China high quality Mini Double Cylinder 1.5HP 24L Portable Piston Direct Driven Air Compressor air compressor CHINAMFG freight
Product Description
About company:
HangZhou Shangyang Trading Co., Ltd. is a foreign trade technology enterprise focusing on providing air compressor products. The company has obvious advantages in the whole industry in terms of technical strength, business communication ability and quality control.
The company’s products mainly include air compressor, welding machine, cleaning machine, water pump, motor, etc., sold to more than 80 countries and regions around the world; And long-term for Europe, North and South America and other CHINAMFG brands and end sellers to provide high-quality air compressor products; The cooperation with these customers enables the company’s products to meet the technical and quality requirements of the mainstream markets in Europe and America.
| Model No. | Motor Power | Speed | Max Delivery | Working Pressure | Tank Volume | Weight | Dimension | |||
| HP | kW | Rpm | L/Min | Bar | Psi | Liter | Gallon | kg | LxWxH(mm) | |
| HL1524 | 1.5 | 1.1 | 2850/3400 | 150/178 | 8 | 115 | 24 | 6.3 | 21 | 58x26x62 |
Common Problem:
Q1. How can I get a quotation of the electric air compressor?
A. Leave us message with your purchase requirements and we will reply you within 1 hour on working
time. Or you may contact us directly by Trade Manager.
Q2. Can you do the OEM for us?
A. Yes, OEM are welcome.
Q3. How about your company’s quality control?
A. We have a professional QA & QC team and will fully track the orders from the very beginning to the very end, such as checking
the materail, supervising the production, checking the finished product, inspecting the packing, ect.
Q4. Can I get a sample to check the quality?
A. We are glad to offer you samples for test. And there is a discount for Trade Assurance Sample Order.
Q5. What about the lead time for bulk production?
A. It will depend on the order quantity, normally it will be 25 days after the deposit.
Service:
| before sales | 1.24 hours online service . 2.Any inquiries will be replied within 12 hours. 3.Offer professional machine details and information. 4.Technology knowledge share . |
| on sale |
1.Protect the client payment security . more better. |
| after sales |
1.Fast delivery and test and adjust machine working well before delivery. |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Overseas Third-Party Support Available |
|---|---|
| Warranty: | 0ne Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Duplex Arrangement |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2024-02-21
China Good quality Freezer Unit Air Compressor Refrigeration Condensing for Cold Storage Room with Good quality
Product Description
SOME PROJECT LIST
| PROJECT TIME | EQUIPMENTS QUANTITY | PROJECT LOCATION |
| 2019 | 50000 UNITS | FOR TOTAL SALSE PROJECTS |
| 2571 | 70000 UNITS | FOR TOTAL PROJECTS |
| 2571 | 80000 UNITS | FOR TOTAL SALSE PROJECTS |
1. Monoblock Type: SPACE SAVING EASY INSTALLATION
– 1 fan motor or 2 fan motors, available for 0.5HP~5HP
– Air condenser with hydrophilic film coating, higner corrosion resistance
– Inner spiral copper pipes, higner heat exchange area and heat exchange efficiency
– Thickened shell made from professional air conditioner manufacturer
2. Box Type: IDEAL FOR OUTDOOR WATERPROOF
– 1 fan motor or 2 fan motors, available for 1HP~12HP
– U shape, V shape or L shape condenser
– Available for the whole series
– Easy to ship, install and maintain
Temperature Parameters
| Temp. Range&Application |
|
Medium Temp. | Low Temp. | |
| 0ºC~10ºC | -18ºC~0ºC | -25ºC~-18ºC | ||
| Cold Storage Friuit&Vegetable | Cold Storage Ice Bag&Vaccine | Cold Storage Fish&Meat |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Video Technical Support, Online Support |
|---|---|
| Warranty: | 1year |
| Type: | Air-Cooled |
| Cooling Water: | Air-Cooled |
| System Type: | Open System |
| Fans Species: | Single-speed Fan |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-02-21
China manufacturer high quality engine driven 300psi 33m3 two stage air compressor with Hot selling
Product Description
Screw type air compressor structure of a unique design, a compact, stylish appearance, high efficiency, small energy consumption, low noise characteristics and long life, is a smart environment-friendly products. Is widely applied in metallurgy, machinery, chemicals, and mining, and electric power industries of the ideal gas source equipment.
Advantage:
1.The third generation of advanced rotor and concise intake control system
2.Efficient centrifugal separator oil and gas, gas oil content is small,tube and core of long life .
3. Efficient, low noise suction fan of the full use of export dynamic pressure
increased effect of heat transfer (air-cooled)
4. Automatic water-cooling system for large air compressor to provide more
efficient
5.Fault diagnosis system, the control panel is easy to operate
6 Removable door, equipment maintenance, service convenient
7.Micro-electronic processing so that temperature, pressure and other parameters are closely monitored .
PRODUCT HIGHLIGHTS
1.The brand power,reliable quality, stable performance.The harsh thermal equilibrium serviceability can guarantee that the machine work effectively under high temperature environment (≤40ºC).
2.Unique patent design, light load startup system, the air control design is adapt to the drilling work with high stability.
3.Efficient cooling system, divided into 3 parts: water- cooled ,mid- cold, oil cold, which ensure the reliable operation of diesel engine, and it’s suitable for high temperature working environment.
4.Independent research and development of the opposite door design, rational layout, which is easy to do regular maintenace ,with advantages of the fixed and portable compressor.
5.A single point lifting, forklift hole device, equipped with drag ring.It is suitable for repair car transport, easy to transfer and installation of the unit.
6.Waterproof and dustproof design, which is suitable for outdoor hard working environment.
7.According to customer requirements, the heating boiler and remote components is available for cold starting.
BRAND CONFIGURATION
Highly Effective Two-stage Compression Screw Airend
High efficiency 2 stage compression engine, with super long bearing life, high reliable sealing performance, produced product quality and manufacturing precision.The long-term market test has established a good
reputation among the global users.
Long operating life Low maintenance cost
High efficiency, little leakage triangle, low specific power
Less wear parts Little vibration, low noise
Name Brand Power
International name brand diesel engine Low fuel consumption and good fuel economy
Compact structure is easy to be maintained Super power,green and enviromental protection
Xihu (West Lake) Dis.nized Control System
German brand VDO instrument Clear contact surface ,easy operation
High performance, brand guarantee Ultra strong sensitivity
Air System- Over Loading Air Filter
United States brand reloading air filtration, cyclone filtration and adsorption filtration, double filtration effect
Dust removal ≥99.9%,filtering fineness ≤3μm
Ensuring the airend to be effectively dustproof and the quality of the air.
Application fields
Comps two-stage compression diesel fixed screw air compressor is widely used in
Our Exhibition
1.Pre-sale service:
Act as a good adviser and assistant of clients enable them to get rich and generous returns on their investments . 1.Select equipment model. 2.Design and manufacture products according to client’s special requirement ; 3.Train technical personnel for clients .
2.Services during the sale:
1.Pre-check and accept products ahead of delivery .
2. Help clients to draft solving plans .
3.After-sale services:
Provide considerate services to minimize clients’ worries.
1.Complete After-sales service,professional engineers available to service machinery at home or oversea.
2. 24 hours technical support by e-mail.
3.Other essential technological service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-21
China Professional High Quality Industrial Rotary Screw Air Compressor lowes air compressor
Product Description
Advantages of CHINAMFG screw air compressor:
1. The latest Sino-German technical cooperation, high reliability.
2. Oil-cooled permanent magnet motor.
3. IP55 protection grade and heavy-duty air filter, suitable for dusty environment.
4. The efficiency of IE4 efficiency motor.
5. Most energy-saving modes are only effective when loading.
6. Wide frequency range 25%-100%.
7. High-quality magnetic materials can withstand temperatures above 180°C.
8. A reliable supplier of permanent magnet motors from Italy.
9. Direct taper connection, no transmission power loss, easy maintenance.
10. The touch screen PLC has a preset running schedule and smarter control.
11. Both the main motor and the fan motor are controlled by the frequency converter, which makes the control more precise.
12. Easy to install and maintain.
13. Excellent energy saving effect, energy saving up to 30-40%.
ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor
manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,
a comprehensive first-class exhibition hall and a testing laboratory.
CHINAMFG has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production
concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology
of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.
The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD
two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric
portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts. CHINAMFG adheres to the business philosophy of
cooperation and mutual benefit to provide a one-stop service for every customer!
CHINAMFG air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South
Africa, Australia, Thailand, Russia, Argentina, Canada and so on. CHINAMFG products have won a good reputation from users for their excellent
quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with
excellent products and meticulous after-sales service!
CHINAMFG warmly welcome customers to visit our factory and establish a wide range of cooperation!
Frequency Asked Question:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-02-20
China Standard Factory Direct Heavy Duty Air Brake Compressor for American Trucks 3104216rx with Great quality
Product Description
Product Description
| Product Name | AIR BRAKE COMPRESSOR |
| Part Number | 315716RX |
| Truck Model | American trucks |
| Origin | China |
| Brand | HCKSFS |
Detailed Photos
Related Products
Company Profile
HangZhou CKS Auto Parts Co., Ltd. is found in 1989 at HangZhou, ZheJiang , China. With over 30 yerars professional experience in the truck parts business, CKS focuses on the manufacturing and exporting the quality truck spare parts for Hino Isu-zu CHINAMFG and CHINAMFG UD trucks.
CKS Auto Parts is major in manufacturing the truck air brake system parts like the air brake compressor assys, compressor repair kits, brake master cylinders, brake boosters, relay valves, quick release valves, etc. CKS is offering hundreds of different models truck air brake parts for our customers.
With over 10 years of experience in exporting business, CKS has served over 1000 satified customers from 15 different coutries. Our customers are coming from the Southeast Asia, Middle East, Russia, Africa, South America.
With wide range amount of stock and model of parts, we do promise our customers that we can do MOQ=1PC if the parts is in stock. And customer satifaction is always our first goal.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | Six Months |
| Type: | Engine |
| Certification: | ISO9001 |
| Driving System Parts: | Suspension |
| Electrical System Parts: | Starting System |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | |
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-20
China Good quality 3HP Air Compressor Price for Sale CE Tire Changer Piston Air Compressor 12v air compressor
Product Description
Product Description
Product Parameters
| MG-1301 | power | 2.2KW/3HP |
| tank | 80L/21GAL | |
| pressure | 8bar/115psi | |
| capacity | 250L/min | |
| MG-1302 | power | 4KW/5.5HP |
| tank | 120L/21GAL | |
| pressure | 8bar/115psi | |
| capacity | 600L/min | |
| MG-1303 | power | 3KW/4HP |
| tank | 110L/29GAL | |
| pressure | 8bar/115psi | |
| capacity | 360L/min | |
| MG-1304 | power | 5.5KW/7HP |
| tank | 160L/42.3GAL | |
| pressure | 8bar/115psi | |
| capacity | 670L/min | |
| MG-1305 | power | 7.5KW/10HP |
| tank | 190L/50.2GAL | |
| pressure | 8bar/115psi | |
| capacity | 970L/min | |
| MG-1306 | power | 7.5KW/10HP |
| tank | 300L/79GAL | |
| pressure | 8bar/115psi | |
| capacity | 1000L/min |
Detailed Photos
Configuration
Portable / Stationary, We support customized services, and our commitment to quality and innovation enables us to provide diverse products to meet the specific needs of various industries.
Certifications
Company Profile
Packaging & Shipping
Q1: Why Choose us?
A: Our products are all qualified by CE & ISO 9001. Our company introduces the advanced technology of German screw machine, adhering to the German industrial design concept and rigorous manufacturing process, specializing in CHINAMFG design, production and sales enterprises. We have 10 years exporting experience, which has helped us win more than 50 loyal foreign agents. We warmly welcome your small trial order for quality or market test.
Q2: Can you do OEM and ODM?
A: Yes, OEM and ODM are both available for us. With the requirements customization of the material, colors, style, the basic quantities will be advised after we discussed together.
Q3: Which shipping way can you provide?
A: We can provide shipping by sea, by air , by express and etc. according to customer requirements.
Q4: How to place order?
A: When you are ready to order, please contact us for confirm the suitable solution & plan & model. What cannot be ignored is you should provide a copy purchase order to ensure that your order is processed properly.
Q5: How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2.Prepare and Well-trained engineers available to overseas service within 1 year.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-20
China Good quality CHINAMFG Compressor, Piston Air Compressor, Piston CHINAMFG Compressor Cae4456y with Great quality
Product Description
| REFRIGERATION CAPACITY AT 50 Hz Rated @54.5 P/130 F Cond.Temp(Watts) 50Hz cooling capacity, tested at 54.5°C/130°F condensing temperature Evaporating Temperature | VOLTAGE | |||||||||||
| Compressor Models | Refrigerant | |||||||||||
| Displacement (cm3) | ||||||||||||
| Oil charge(cm3) | ||||||||||||
| (D Expansion Device | ||||||||||||
| Cooling | ||||||||||||
| -10°C +14°F | -5°C +23 °F | 0°C + 32°F | +7.2°C +45 °F | +10°C +50 °F | +15°C +59 °F | |||||||
| AJ 5510F | 22 | 18.6 | 887 | C | F | 920 | 1300 | 1730 | 2443 | 2760 | 3399 | 208-220V/1/50Hz |
| AJ 5512E | 22 | 21.8 | 887 | C | F | 1250 | 1670 | 2130 | 2904 | 3250 | 3898 | 208-220V /1 / 50Hz |
| AJ 5513E | 22 | 24.2 | 887 | C | F | 1460 | 1910 | 2385 | 3203 | 3580 | 4263 | 208-220V /1/ 50Hz |
| AJ 5515E | 22 | 26 | 887 | C | F | 1680 | 2170 | 2720 | 3632 | 4571 | 4770 | 208-220V /1/ 50Hz |
| TAJ 5515E | 22 | 26 | 887 | C,V | F | 1680 | 2170 | 2720 | 3632 | 4571 | 4770 | 400V/3/ 50Hz |
| AJ 5518E | 22 | 32.7 | 887 | C | F | 2210 | 2760 | 3435 | 4572 | 5050 | 6007 | 208-220V /1/ 50Hz |
| AJ 5519E | 22 | 34.5 | 887 | C | F | 2320 | 2880 | 3590 | 4785 | 5300 | 6327 | 208-220V /1/ 50Hz |
| TAJ 5519E | 22 | 34.5 | 887 | C,V | F | 2320 | 2880 | 3590 | 4785 | 5300 | 6327 | 400V/3/ 50Hz |
| FH 5522F | 22 | 40.8 | 1330 | C | F | 2298 | 3059 | 3955 | 5483 | 6153 | 208-220V /1/ 50Hz | |
| TFH5522F | 22 | 40.8 | 1330 | C,V | F | 2298 | 3059 | 3955 | 5483 | 6153 | 400V/3/ 50Hz | |
| FH 5524F | 22 | 43.9 | 1330 | C | F | 2484 | 3309 | 4279 | 5929 | 6652 | 208-220V /1/ 50Hz | |
| TFH 5524F | 22 | 43.9 | 1330 | C,V | F | 2484 | 3309 | 4279 | 5929 | 6652 | 400V/3/ 50Hz | |
| FH 5528F | 22 | 49.0 | 1330 | C | F | 2914 | 3852 | 4950 | 6811 | 7625 | 208-220V /1/ 50Hz | |
| TFH5528F | 22 | 49.0 | 1330 | C,V | F | 2914 | 3852 | 4950 | 3811 | 7625 | 400V/3/ 50Hz | |
| FH 5532F | 22 | 53.1 | 1625 | C | F | 3303 | 4327 | 5540 | 7619 | 8534 | 208-220V /1/ 50Hz | |
| TFH 5532F | 22 | 53.1 | 1625 | C,V | F | 3303 | 4327 | 5540 | 7619 | 8534 | 400V/3/ 50Hz | |
| FH 5538F | 22 | 67.5 | 1625 | C | F | 4146 | 5384 | 6848 | 9353 | 1571 | 208-220V /1/ 50Hz | |
| TFH5538F | 22 | 57.5 | 1625 | C,V | F | 4146 | 5384 | 6848 | 9353 | 1571 | 400V/3/ 50Hz | |
| FH 5542F | 22 | 74.2 | 1625 | C | F | 4343 | 5645 | 7215 | 9951 | 11166 | 208-220V /1/ 50Hz | |
| TFH5542F | 22 | 74.2 | 1625 | C,V | F | 4343 | 5645 | 7215 | 9951 | 11166 | 400V/3/ 50Hz | |
| TAG5546E | 22 | 90.2 | 1960 | C,V | F | 4368 | 5934 | 7839 | 11253 | 12815 | 15961 | 400V/3/ 50Hz |
| TAG 5553E | 22 | 101 | 1960 | C,V | F | 5306 | 7571 | 9105 | 12922 | 14713 | 18406 | 400V/3/ 50Hz |
| TAG 5561E | 22 | 113 | 1960 | C,V | F | 6133 | 8164 | 1571 | 14870 | 16802 | 20658 | 400V/3/ 50Hz |
| TAG5568E | 22 | 124 | 1960 | C,V | F | 6967 | 9180 | 11862 | 16676 | 18887 | 23359 | 400V/3/ 50Hz |
| TAG5573E | 22 | 135 | 1960 | C,V | F | 7501 | 9804 | 12632 | 17816 | 25718 | 25204 | 400V/3/ 50Hz |
| COMPRESSOR MODEL | R134A | REFRIGERATION CAPACITY AT 50 Hz Rated @54.5 P/130 F Cond.Temp(Watts) 50Hz cooling capacity, tested at 54.5°C/130°F condensing temperature Evaporating Temperature | VOLTAGE | |||||||||||
| Nominal Power(H.P) | ||||||||||||||
| Refrigerant | ||||||||||||||
| Displacement (cm3) | ||||||||||||||
| Oil charge(cm3) | ||||||||||||||
| Expansion device | Cooling | |||||||||||||
| -25°C -13°F | -15°C -5°F | -10°C +14°F | -5°C +23°F | -0°C +32°F | +7.2°C -+4°F | +15°C +59°F | ||||||||
| AEZ 3425Y | 1/5 | 134a | 7.55 | 450 | C | F | 116 | 185 | 260 | 350 | 455 | 635 | 866 | 208-220V/ 1/50Hz |
| AEZ4425Y | 1/5 | 134a | 7.55 | 450 | C, V | F | 116 | 185 | 260 | 350 | 455 | 635 | 866 | 220-240V/ 1/50Hz |
| AEZ 3430Y | 1/4 | 134a | 8.85 | 450 | C | F | 195 | 245 | 328 | 432 | 558 | 777 | 1065 | 220-240V/1/50Hz |
| AEZ4430Y | 1/4 | 1 34a | 8.85 | 450 | C, V | F | 195 | 245 | 328 | 432 | 558 | 777 | 1065 | 208-220V/ 1/50Hz |
| AE 3440Y | 1/3 | 134a | 12.05 | 450 | C | F | 236 | 310 | 421 | 561 | 731 | 1026 | 1413 | 220-240V/ 1/50Hz |
| CAE 3440Y | 1/3 | 134a | 12.5 | 450 | C, V | F | 236 | 310 | 421 | 561 | 731 | 1026 | 1413 | 208-220V/1/50Hz |
| CAE 4448Y | 1/3 | 1 34a | 14.15 | 450 | C, V | F | 344 | 403 | 530 | 693 | 892 | 1242 | 1705 | 208-220V/ 1/50Hz |
| CAE 4456Y | 7/16 | 134a | 16 | 450 | C, V | F | 381 | 458 | 604 | 787 | 1009 | 1396 | 1904 | 208-220V/ 1/50Hz |
| CAJ 4452Y | 3/7 | 134a | 15.2 | 887 | C, V | F | 226 | 370 | 528 | 724 | 957 | 1358 | 1879 | 208-220V/1/50Hz |
| CAJ 4461Y TAJ 4461 Y | 1/2 | 134a | 18.3 | 887 | C, V | F | 370 | 475 | 642 | 856 | 1115 | 1569 | 2168 | 220-240V/1/50Hz 400V/3/50Hz |
| CAJ 4476Y | 5/8 | 134a | 21.75 | 887 | C, V | F | 352 | 538 | 756 | 1030 | 1358 | 1926 | 2668 | 220-240V/ 1/50Hz |
| CAJ 4492Y TAJ 4492Y | 3/4 | 134a | 25.95 | 887 | C, V | F | 255 | 584 | 871 | 1215 | 1617 | 2295 | 3164 | 220-240V/ 1/50Hz 400V/3/50Hz |
| CAJ 4511Y TAJ 4511 Y | 1 | 1 34a | 32.7 | 887 | C, V | F | 569 | 878 | 1227 | 1654 | 2160 | 3026 | 4148 | 220-240V/ 1 /50Hz 400V/3/50Hz |
| CAH 4518Y TFG 4518Y | 1-1/2 | 134a | 53.2 | 1330 | C, V | F | 208 | 1036 | 1650 | 2371 | 3200 | 4583 | 6333 | 220-240V/ 1/50Hz 400V/3/50Hz |
| CAH 4525Y TFG 4525Y | 2 | 134a | 74.25 | 1330 | C, V | F | 1155 | 1667 | 2343 | 3201 | 4239 | 6053 | 8442 | 220-240V/1/50Hz 400V/3/50Hz |
| TAG 4528Y | 2-1/2 | 134a | 90.2 | 1960 | C, V | F | 637 | 1368 | 2166 | 3208 | 4492 | 6766 | 9799 | 400V/3/50Hz |
| TAG 4534Y | 3 | 134a | 100.7 | 1960 | C, V | F | 1177 | 1946 | 2871 | 4061 | 5514 | 8071 | 11460 | 400V/3/50Hz |
| TAG 4537Y | 3-1/4 | 134a | 112.5 | 1960 | C, V | F | 1490 | 2281 | 3308 | 4634 | 6258 | 9123 | 12926 | 400V/3/50Hz |
| TAG 4543Y | 3-1/2 | 134a | 124.4 | 1960 | C, V | F | 1836 | 2400 | 3442 | 4848 | 6620 | 9812 | 14124 | 400V/3/50Hz |
| TAGD 4556Y | 5 | 134a | 180.4 | 3920 | C, V | F | 1274 | 2735 | 4333 | 6415 | 6983 | 13533 | 19597 | 400V/3/50Hz |
| TAGD 4574Y | 6-1/2 | 134a | 225 | 3920 | C, V | F | 2980 | 4562 | 6616 | 9267 | 12517 | 18246 | 25852 | 400V/3/50Hz |
| COMPRESSOR MODEL | REFRIGERATION CAPACITY AT 50 Hz Rated @54.5 P/130 F Cond.Temp(Watts) 50Hz cooling capacity, tested at 54.5°C/130°F condensing temperature Evaporating Temperature | VOLTAGE | |||||||||||
| Nominal Power(H.P) | |||||||||||||
| Refrigerant | |||||||||||||
| Displacement (cm3) | |||||||||||||
| Oil charge(cm3) | |||||||||||||
| Expansion device | Cooling | ||||||||||||
| -10°C -13°F | -15°C +5°F | -10°C +14°F | -0°C +32°F | +7.2°C +45°F | +15°C +59°F | ||||||||
| AE 3440A | 1/3 | 12 | 12.05 | 450 | C,V | F | 287 | 373 | 488 | 765 | 1571 | 1372 | 208-220V/1/50HZ |
| CAE 4440A | 1/3 | 12 | 12.05 | 450 | C,V | F | 287 | 373 | 488 | 765 | 1571 | 1372 | 208V/1/50Hz |
| CAE4448A | 3/7 | 12 | 14.00 | 450 | C,V | F | 337 | 443 | 567 | 894 | 1198 | 1590 | 208V/1/50HZ |
| CAE4456A | 7/16 | 12 | 16.00 | 450 | C,V | F | 363 | 496 | 638 | 1005 | 1339 | 1766 | 208V/1/50HZ |
| CAJ4452A | 3/7 | 12 | 15.20 | 887 | C,V | F | 175 | 435 | 595 | 970 | 1283 | 1650 | 208-220V/1/50Hz |
| CAJ4461A TAJ 4461A | 1/2 | 12 | 18.20 | 887 | C,V | F | 240 | 540 | 725 | 1165 | 1508 | 1905 | 208-220V/1/50Hz 400V/3/50HZ |
| CAJ4492A TAJ4492A | 3/4 | 12 | 25.95 | 887 | C,V | F | 385 | 810 | 1080 | 1740 | 2295 | 3000 | 208-220V/1/50HZ 400V/3/50HZ |
| CAJ4511A TAJ 4511A | 1 | 12 | 32.70 | 887 | C,V | F | 595 | 1140 | 1495 | 2320 | 3032 | 4000 | 208-220V/1/50Hz 400V/3/50Hz |
| CAH4518A TAH4518A | 1-1/2 | 12 | 53.20 | 1330 | C,V | F | 1055 | 1520 | 1990 | 3300 | 4527 | 6090 | 208-220V/1/50HZ 400V/3/50HZ |
| CAH4525A | 2 | 12 | 74.25 | 1320 | C,V | F | 1607 | 2120 | 2760 | 4540 | 6216 | 8420 | 400V/3/50HZ |
| R22 Rerigerant | |||||||||||||
| AE Z4425E | 1/5 | 22 | 4.50 | 450 | C,V | F | 138 | 192 | 256 | 413 | 553 | 728 | 220-240V/1/50HZ |
| AEZ4430E | 1/4 | 22 | 5.70 | 450 | C,V | F | 192 | 255 | 336 | 538 | 718 | 945 | 208-220V/1/50HZ |
| AEZ4440E | 1/3 | 22 | 7.55 | 450 | C | F | 308 | 362 | 464 | 733 | 980 | 1298 | 208-220V/1/50Hz |
| AE Z4440E | 1/3 | 22 | 7.55 | 450 | C,V | F | 308 | 362 | 464 | 733 | 980 | 1298 | 208-220V/1/50HZ |
| AEZ9440E | 1/3 | 22 | 7.55 | 450 | C,V | F | 222 | 362 | 464 | 733 | 975 | 1302 | 220-240V/1/50HZ |
| AE3450E | 3/7 | 22 | 9.40 | 450 | C | F | 355 | 426 | 554 | 896 | 1212 | 1623 | 220-240V/1/50HZ |
| CAE4450E | 3/7 | 22 | 9.40 | 450 | C,V | F | 355 | 426 | 554 | 896 | 1212 | 1623 | 208-220V/1/50HZ |
| CAE9450T | 3/7 | 22 | 9.40 | 450 | C,V | F | 256 | 426 | 554 | 896 | 1212 | 1623 | 208-220V/1/50HZ |
| CAE9460T | 1/2 | 22 | 11.30 | 450 | C,V | F | 324 | 553 | 715 | 1134 | 1514 | 2000 | 208-220V/1/50HZ |
| CAJ 9480T TAJ9480T | 5/8 | 22 | 15.20 | 887 | C,V | F | 461 | 786 | 1011 | 1586 | 2103 | 2761 | 208-220V/1/50HZ 400V/3/50HZ |
| CAJ9510T TAJ9510T | 1 | 22 | 18.30 | 887 | C,V | F | 545 | 956 | 1229 | 1909 | 2510 | 3266 | 208-220V/1/50Hz 400V/3/50Hz |
| CAJ9513T TAJ9513T | 1-1/8 | 22 | 24.20 | 887 | C,V | F | 526 | 1074 | 1451 | 2411 | 3272 | 4366 | 208-220V/1/50Hz 400V/3/50Hz |
| CAJ9513T | 1-1/4 | 22 | 25.95 | 887 | C,V | F | 771 | 1233 | 1673 | 2727 | 3629 | 4743 | 208-220V/1/50HZ |
| TAJ4517T | 1-1/4 | 22 | 25.95 | 887 | C,V | F | 771 | 1230 | 1680 | 2720 | 3621 | 4740 | 400V/3/50HZ |
| CAJ4519T | 1-3/4 | 22 | 34.45 | 887 | C,V | F | 1382 | 1780 | 2304 | 3601 | 4738 | 6162 | 208-220V/1/50Hz |
| TAJ4519T | 1-3/4 | 22 | 34.45 | 887 | C,V | F | 1385 | 1780 | 2304 | 3601 | 4738 | 6162 | 400V/3/50HZ |
| FH4522F TFH4522F | 2 | 22 | 39.95 | 1480 | C,V | F | 1068 | 1598 | 2202 | 3774 | 5206 | 7042 | 208-220V/1/50HZ 400V/3/50HZ |
| FH4524F TFH4524F | 2 | 22 | 43.50 | 1480 | C,V | F | 1463 | 1841 | 2456 | 4131 | 5706 | 7759 | 208-220V/1/50HZ 400V/3/50HZ |
| FH4531F TFH4531F | 2-3/4 | 22 | 56.65 | 1480 | C,V | F | 1780 | 2620 | 3504 | 5659 | 7528 | 9854 | 208-220V/1/50HZ 400V/3/50HZ |
| TFH4538F | 3 | 22 | 67.50 | 1625 | C,V | F | 3100 | 4169 | 7041 | 96959 | 13400 | 400V/3/50Hz | |
| TFH4540F | 3-1/2 | 22 | 74.25 | 1480 | C,V | F | 1299 | 3000 | 4301 | 7330 | 9863 | 12938 | 400V/3/50HZ |
| TAG4536T | 4 | 22 | 90.20 | 1960 | C,V | F | 1328 | 3103 | 4368 | 7839 | 11253 | 15961 | 400V/3/50Hz |
| TAG4553T | 4-1/2 | 22 | 100.70 | 1960 | C,V | F | 1528 | 3875 | 5306 | 9105 | 12927 | 18406 | 400V/3/50Hz |
| TAG4568T | 5 | 22 | 112.50 | 1960 | C,V | F | 2059 | 4465 | 6133 | 1571 | 14870 | 20658 | 400V/3/50HZ |
| TAG4568T | 6 | 22 | 124.40 | 1960 | C,V | F | 2493 | 5157 | 6967 | 11862 | 16676 | 23359 | 400V/3/50HZ |
| TAG4576T | 6 | 22 | 134.80 | 1960 | C,V | F | 2803 | 5629 | 7501 | 12632 | 17816 | 25204 | 400V/3/50HZ |
| TAGD4590T | 7-1/2 | 22 | 180.40 | 3920 | C,V | F | 2656 | 6206 | 8735 | 15678 | 22506 | 31922 | 400V/3/50Hz |
| TAGD4610T | 9 | 22 | 201.40 | 3920 | C,V | F | 3055 | 7750 | 10613 | 18211 | 25844 | 36811 | 400V/3/50HZ |
| TAGD4612T | 10 | 22 | 225.00 | 3920 | C,V | F | 4117 | 8929 | 12267 | 21186 | 29739 | 41315 | 400V/3/50HZ |
| TAGD4614T | 12 | 22 | 248.80 | 3920 | C,V | F | 4987 | 1571 | 13933 | 23724 | 33352 | 46718 | 400V/3/50HZ |
| MEDIUM/HIGH BACK PRESSURE COMPRESSORS -R404A | |||||||||||||
| Nominal Power(H.P.) | REFRIGERATION CAPACITY AT 50 Hz Rated @54.5 P/130 F Cond.Temp(Watts) 50Hz cooling capacity, tested at 54.5°C/130°F condensing temperature Evaporating Temperature | VOLTAGE | |||||||||||
| Refrigerant | |||||||||||||
| Displacement (cm3) | |||||||||||||
| Oil charge(cm3) | |||||||||||||
| (D Expansion Device | |||||||||||||
| Cooling | |||||||||||||
| -25°C -13°F | -15°C +5 °F | -10°C + 14°F | 0°C +32 °F | +7.2°C +45 °F | + 15°C +59 °F | ||||||||
| R404A New Refrigerant | |||||||||||||
| AEZ 4425Z | 1/5 | R404A | 4.50 | 450 | C,V | F | 142 | 198 | 263 | 432 | 587 | 787 | 208-220V/l/50Hz |
| AEZ 3430Z | 1/4 | R404A | 5.70 | 450 | C | F | 192 | 258 | 346 | 550 | 741 | 1571 | 220-240V/1/50HZ |
| AEZ 4430Z | 1/4 | R404A | 5.70 | 450 | C,V | F | 192 | 258 | 346 | 550 | 741 | 1571 | 208-220V/l/50Hz |
| AEZ 3440Z | 1/3 | R404A | 7.55 | 450 | C | F | 287 | 357 | 462 | 743 | 1004 | 1342 | 208-220V/l/50Hz |
| AEZ 4440Z | 1/3 | R404A | 7.55 | 450 | C,V | F | 287 | 357 | 462 | 743 | 1004 | 1342 | 208-220V/l/50Hz |
| AEZ 9440Z | 1/3 | R404A | 7.55 | 450 | C,V | F/RH | 214 | 357 | 462 | 743 | 1004 | 1342 | 220-240V/l/50Hz |
| AE 3450Z | 3/7 | R404A | 9.40 | 450 | C | F | 345 | 434 | 567 | 927 | 1270 | 1729 | 220-240V/l/50Hz |
| CAE 4450Z | 3/7 | R404A | 9.40 | 450 | C,V | F | 355 | 434 | 567 | 927 | 1270 | 1729 | 208-220V/l/50Hz |
| CAE 9450Z | 3/7 | R404A | 9.40 | 450 | C,V | F | 250 | 434 | 567 | 927 | 1270 | 1729 | 208-220V/l/50Hz |
| CAE 9460Z | 1/2 | R404A | 11.30 | 450 | C,V | F | 297 | 546 | 711 | 1141 | 1545 | 2086 | 208-220V/l/50Hz |
| CAE 9470Z | 9/16 | R404A | 13.30 | 450 | C,V | F | 383 | 669 | 869 | 1392 | 1878 | 2514 | 208-220V/l/50Hz |
| CAJ 9480Z TAJ9480Z | 5/8 | R404A | 15.20 | 887 | C,V | F | 393 | 747 | 1009 | 1607 | 2172 | 2943 | 208-220V/l/50Hz 400V/3/50Hz |
| CAJ 9510Z TAJ9510Z | 1 | R404A | 18.30 | 887 | C,V | F | 527 | 970 | 1252 | 1972 | 2650 | 3563 | 208-220V/l/50Hz 400V/3/50Hz |
| CAJ9513Z TAJ9513Z | 1-1/8 | R404A | 24.20 | 887 | C,V | F | 497 | 1114 | 1501 | 2485 | 3406 | 4646 | 208-220V/l/50Hz 400V/3/50Hz |
| CAJ 4517Z TAJ4517Z | 1-1/4 | R404A | 25.95 | 887 | C,V | F | 1072 | 1364 | 1776 | 2857 | 3860 | 5173 | 208-220V/l/50Hz 400V/3/50Hz |
| CAJ 4519Z TAJ4519Z | 1-3/4 | R404A | 34.45 | 887 | C,V | F | 1260 | 1769 | 2353 | 3756 | 5030 | 6735 | 208-220V/l/50Hz 400V/3/50Hz |
| FH 4522Z TFH4522Z | 2 | R404A | 39.95 | 1480 | C,V | F | 966 | 1541 | 2240 | 3947 | 5475 | 7459 | 208-220V/l/50Hz 400V/3/50Hz |
| FH 4524Z TFH4524Z | 2 | R404A | 43.50 | 1480 | C,V | F | 1379 | 1835 | 2570 | 4361 | 5977 | 8101 | 208-220V/l/50Hz 400V/3/50Hz |
| FH 4531Z TFH4531Z | 2-3/4 | R404A | 56.65 | 1480 | C,V | F | 1623 | 2382 | 3300 | 5706 | 7782 | 15712 | 208-220V/l/50Hz 400V/3/50Hz |
| FH 4540Z TFH 4540Z | 3-1/2 | R404A | 74.25 | 1480 | C,V | F | 3078 | 3388 | 4425 | 7276 | 9814 | 13056 | 208-220V/l/50Hz 400V/3/50Hz |
| TAG 4546Z | 4 | R404A | 90.20 | 1960 | C,V | F | 1438 | 2806 | 4292 | 7956 | 11297 | 15719 | 400V/ 3 /50Hz |
| TAG4553Z | 4-1/2 | R404A | 100.70 | 1960 | C,V | F | 2774 | 3461 | 4922 | 8958 | 12805 | 17880 | 400V/ 3 /50Hz |
| TAG 4561Z | 5 | R404A | 112.50 | 1960 | C,V | F | 3965 | 4363 | 5895 | 1571 | 14772 | 25717 | 400V/ 3 /50Hz |
| TAG 4568Z | 6 | R404A | 124.40 | 1960 | C,V | F | 5146 | 5322 | 7077 | 11973 | 16636 | 22760 | 400V/ 3 /50Hz |
| TAG 4573Z | 6 | R404A | 134.80 | 1960 | C,V | F | 5453 | 5788 | 7710 | 13123 | 18228 | 24806 | 400V/ 3 /50Hz |
| TAGD4590Z | 7-1/2 | R404A | 180.40 | 3920 | C,V | F | 2876 | 5612 | 8584 | 15912 | 22594 | 31438 | 400V/ 3 /50Hz |
| TAGD4610Z | 9 | R404A | 201.40 | 3920 | C,V | F | 5548 | 6922 | 9844 | 17916 | 25610 | 35760 | 400V/ 3 /50Hz |
| TAGD4512Z | 10 | R404A | 225.00 | 3920 | C,V | F | 7930 | 8726 | 11790 | 20904 | 29544 | 4571 | 400V/ 3 /50Hz |
| TAGD4514Z | 12 | R404A | 248.80 | 3920 | C,V | F | 15712 | 10644 | 14154 | 23946 | 33272 | 45520 | 400V/ 3 /50Hz |
Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Installation Type: | Movable Type |
|---|---|
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Model: | Cae4456y |
| Transport Package: | Wooden/Cartoon Box |
| Specification: | 26*26*58CM |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-02-18
China high quality CHINAMFG Air Tools Portable Industrial Compressors 1800W 2.5HP 50L Electric Oil Free Air Compressor lowes air compressor
Product Description
FIXTEC Air Tools Portable Industrial Compressors 1800W 2.5HP 50L Electric Oil Free Air Compressor
Main Products
View more products,you can click product keywords…
| Main Products | ||
| Power Tools | Bench Tools | Accessories |
| Hand Tools | Air Tools | Water Pumps |
| Welding Machine | Generators | PPE |
Product Description
EBIC Tools is established in 2003, with rich experience in tools business, FIXTEC is our registered brand. One-stop tools station, including full line of power tools, hand tools, bench tools, air tools, welding machine, water pumps, generators, garden tools and power tools accessories etc.
|
Model NO. |
FAC25501 |
|
Brand |
CHINAMFG |
|
Certificate |
CE/ROHS/GS |
|
Power |
1800W, 2.5HP |
|
Tank size |
50L |
|
Air delivery |
206L/min |
|
Pressure |
8 bar(115psi) |
|
Speed |
2850RPM |
|
Package |
Brown box |
|
Carton size |
81x33x69cm |
|
QTY/CTN |
1PC |
|
NW./GW. |
35KG/37KG |
Recommended products
Customer Evaluation
Company Profile
FAQ
FIXTEC team is based in China to support global marketing and we are looking for local distributors as our long term partners,Welcome to contact us!
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Compress Level: | Single-Stage |
| Samples: |
US$ 88.5/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-02-17