Product Description
Product Description
Detailed Photos
Product Parameters
| Model | KAW-75A |
| Power(Kw) | 75Kw |
| Pressure(Bar) | 8Bar |
| Volume flow(m3/min) | 13m3/min |
| Air Outlet | 1 1/2” |
| Weight(kg) | 1630Kg |
| Dimension(mm) | 1800×1300×1750mm |
Certifications
Packaging & Shipping
Installation Instructions
Company Profile
ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.
FAQ
Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.
Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.
Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.
Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.
Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.
Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.
Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.
| After-sales Service: | on Line Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 25400/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-11-13
China factory Water Lubrication Rotary 45kw Oil Free Screw Air Compressor 12v air compressor
Product Description
Water Lubrication Rotary 45kw Oil Free Screw Air Compressor 45KW 45 HP Oil Free Screw Air Compressor
Water lubricated oil free compressor-technical parameters:
| Model | Work pressure | Capacity | Power | Noise | Inlet and outlet diameters of cooling water | Water inlet & outlet T/H |
Lubricating water L |
Dimensions | Weight | Air outlet diameter
|
| WZS-06PMA | 8.5 | 0.3~0.78 | 5.5 | 57 | 3/4″ | 1.5 | 10 | 800x800x1100 | 460 | 3/4″ |
| 10.5 | 0.2~0.65 | |||||||||
| WZS-08PMA | 8.5 | 0.35~1.17 | 7.5 | 57 | 3/4″ | 2 | 10 | 800x800x1100 | 510 | 3/4″ |
| 10.5 | 0.3~1.05 | |||||||||
| 12.5 | 0.24~0.81 | |||||||||
| WZS-11PMA | 8.5 | 0.54~1.72 | 11 | 60 | 1″ | 2.5 | 26 | 1200x800x1300 | 620 | 3/4″ |
| 10.5 | 0.45~1.42 | |||||||||
| 12.5 | 0.35~1.10 | |||||||||
| WZS-15PMA | 8.5 | 0.75~2.43 | 15 | 60 | 1″ | 3.5 | 26 | 1200x800x1300 | 670 | 1″ |
| 10.5 | 0.65~2.17 | |||||||||
| 12.5 | 0.6~1.85 | |||||||||
| WZS-18PMA | 8.5 | 0.9~3.13 | 18.5 | 63 | 1″ | 4 | 30 | 1400x1000x1520 | 730 | 1″ |
| 10.5 | 0.9~2.82 | |||||||||
| 12.5 | 0.6~2.05 | |||||||||
| WZS-22PMA | 8.5 | 1.1~3.62 | 22 | 63 | 1 1/2″ | 5 | 30 | 1400x1000x1520 | 780 | 1″ |
| 10.5 | 0.97~3.21 | |||||||||
| 12.5 | 0.85~2.78 | |||||||||
| WZS-30PMA | 8.5 | 1.55~5.12 | 30 | 66 | 1 1/2″ | 7 | 40 | 1500x1150x1500 | 1150 | 1 1/2″ |
| 10.5 | 1.255~4.43 | |||||||||
| 12.5 | 1.1~3.63 | |||||||||
| WZS-37PMA | 8.5 | 1.91~6.30 | 37 | 66 | 1 1/2″ | 9 | 40 | 1500x1150x1500 | 1200 | 1 1/2″ |
| 10.5 | 1.60~5.33 | |||||||||
| 12.5 | 1.42~4.77 | |||||||||
| WZS-45PMA | 8.5 | 2.50~8.30 | 45 | 68 | 1 1/2″ | 10 | 90 | 1800x1300x1750 | 1490 | 2″ |
| 10.5 | 1.91~6.30 | |||||||||
| 12.5 | 1.70~5.56 | |||||||||
| WZS-55PMA | 8.5 | 3.0~9.76 | 55 | 69 | 1 1/2″ | 12 | 100 | 1800x1300x1750 | 1570 | 2″ |
| 10.5 | 2.60~8.55 | |||||||||
| 12.5 | 2.30~7.67 | |||||||||
| WZS-75PMA | 8.5 | 3.95~13.00 | 75 | 72 | 1 1/2″ | 18 | 100 | 1800x1300x1750 | 1750 | 2″ |
| 10.5 | 3.40~11.50 | |||||||||
| 12.5 | 3.0~9.70 | |||||||||
| WZS-90PMA | 8.5 | 5.0~16.60 | 90 | 73 | 1 1/2″ | 20 | 120 | 2200x1550x1800 | 2450 | 2 1/2″ |
| 10.5 | 4.30~14.66 | |||||||||
| 12.5 | 3.72~12.60 | |||||||||
| WZS-110PMA | 8.5 | 6.0~19.97 | 110 | 77 | 1 1/2″ | 24 | 120 | 2200x1550x1800 | 2580 | 2 1/2″ |
| 10.5 | 5.0~16.66 | |||||||||
| 12.5 | 4.65~15.56 | |||||||||
| WZS-132PMA | 8.5 | 6.75~22.52 | 132 | 77 | 2″ | 30 | 120 | 2200x1550x1800 | 2700 | 2 1/2″ |
| 10.5 | 6.0~19.97 | |||||||||
| 12.5 | 5.07~16.90 | |||||||||
| WZS-160PMA | 8.5 | 8.5~28.11 | 160 | 79 | 3″ | 35 | 160 | 3000x1800x2100 | 3900 | 3″ |
| 10.5 | 706~25.45 | |||||||||
| 12.5 | 6.7~22.52 | |||||||||
| WZS-185PMA | 8.5 | 10~33.97 | 185 | 79 | 3″ | 38 | 160 | 3000x1800x2100 | 4050 | 3″ |
| 10.5 | 8.72~29.00 | |||||||||
| 12.5 | 7075~25.210 | |||||||||
| WZS-200PMA | 8.5 | 11.2~36.75 | 200 | 80 | 4″ | 42 | 200 | 3100x1850x2100 | 4200 | 4″ |
| 10.5 | 9.68~32.78 | |||||||||
| 12.5 | 9.2~29.24 | |||||||||
| WZS-220PMA | 8.5 | 12.2~39.67 | 220 | 80 | 4″ | 47 | 200 | 3100x1850x2100 | 4400 | 4″ |
| 10.5 | 11.2~36.75 | |||||||||
| 12.5 | 9.0~29.63 | |||||||||
| WZS-250PMA | 8.5 | 13.5~44.78 | 250 | 80 | 4″ | 53 | 200 | 3100x1850x2100 | 4800 | 4″ |
| 10.5 | 12.3~39.67 | |||||||||
| 12.5 | 10.2~33.97 |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts: Pasha Teng
Mob: -173-1757-2798
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-11-08